Hypergraph Diffusion for High-Order Recommender Systems
- URL: http://arxiv.org/abs/2501.16722v1
- Date: Tue, 28 Jan 2025 05:59:29 GMT
- Title: Hypergraph Diffusion for High-Order Recommender Systems
- Authors: Darnbi Sakong, Thanh Trung Huynh, Jun Jo,
- Abstract summary: We introduce WaveHDNN, an innovative wavelet-enhanced hypergraph diffusion framework.
WaveHDNN integrates a Heterophily-aware Collaborative, designed to capture user-item interactions across diverse categories, with a Multi-scale Group-wise Structure.
Cross-view contrastive learning is employed to maintain robust and consistent representations.
- Score: 5.71357784811215
- License:
- Abstract: Recommender systems rely on Collaborative Filtering (CF) to predict user preferences by leveraging patterns in historical user-item interactions. While traditional CF methods primarily focus on learning compact vector embeddings for users and items, graph neural network (GNN)-based approaches have emerged as a powerful alternative, utilizing the structure of user-item interaction graphs to enhance recommendation accuracy. However, existing GNN-based models, such as LightGCN and UltraGCN, often struggle with two major limitations: an inability to fully account for heterophilic interactions, where users engage with diverse item categories, and the over-smoothing problem in multi-layer GNNs, which hinders their ability to model complex, high-order relationships. To address these gaps, we introduce WaveHDNN, an innovative wavelet-enhanced hypergraph diffusion framework. WaveHDNN integrates a Heterophily-aware Collaborative Encoder, designed to capture user-item interactions across diverse categories, with a Multi-scale Group-wise Structure Encoder, which leverages wavelet transforms to effectively model localized graph structures. Additionally, cross-view contrastive learning is employed to maintain robust and consistent representations. Experiments on benchmark datasets validate the efficacy of WaveHDNN, demonstrating its superior ability to capture both heterophilic and localized structural information, leading to improved recommendation performance.
Related papers
- Handling Heterophily in Recommender Systems with Wavelet Hypergraph Diffusion [8.98789209944451]
We introduce FWHDNN (Fusion-based Wavelet Hypergraph Diffusion Neural Networks), an innovative framework aimed at advancing representation learning in recommendation tasks.
The model incorporates three key components: (1) a cross-difference relation encoder leveraging heterophily-aware hypergraph diffusion to adapt message-passing for diverse class labels, (2) a multi-level cluster-wise encoder employing wavelet transform-based hypergraph neural network layers to capture multi-scale topological relationships, and (3) an integrated multi-modal fusion mechanism that combines structural and textual information through intermediate and late-fusion strategies.
arXiv Detail & Related papers (2025-01-24T11:08:29Z) - Topology-Aware Popularity Debiasing via Simplicial Complexes [19.378410889819165]
Test-time Simplicial Propagation (TSP) incorporates simplicial complexes (SCs) to enhance the expressiveness of Graph Neural Networks (GNNs)
Our approach captures multi-order relationships through SCs, providing a more comprehensive representation of user-item interactions.
Our method produces more uniform distributions of item representations, leading to fairer and more accurate recommendations.
arXiv Detail & Related papers (2024-11-21T07:12:47Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Linear-Time Graph Neural Networks for Scalable Recommendations [50.45612795600707]
The key of recommender systems is to forecast users' future behaviors based on previous user-item interactions.
Recent years have witnessed a rising interest in leveraging Graph Neural Networks (GNNs) to boost the prediction performance of recommender systems.
We propose a Linear-Time Graph Neural Network (LTGNN) to scale up GNN-based recommender systems to achieve comparable scalability as classic MF approaches.
arXiv Detail & Related papers (2024-02-21T17:58:10Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Self-Supervised Hypergraph Transformer for Recommender Systems [25.07482350586435]
Self-Supervised Hypergraph Transformer (SHT)
Self-Supervised Hypergraph Transformer (SHT)
Cross-view generative self-supervised learning component is proposed for data augmentation over the user-item interaction graph.
arXiv Detail & Related papers (2022-07-28T18:40:30Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
We propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF)
HCCF captures local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture.
Our model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems.
arXiv Detail & Related papers (2022-04-26T10:06:04Z) - An Adaptive Graph Pre-training Framework for Localized Collaborative
Filtering [79.17319280791237]
We propose an adaptive graph pre-training framework for localized collaborative filtering (ADAPT)
ADAPT captures both the common knowledge across different graphs and the uniqueness for each graph.
It does not require transferring user/item embeddings, and is able to capture both the common knowledge across different graphs and the uniqueness for each graph.
arXiv Detail & Related papers (2021-12-14T06:53:13Z) - Contrastive Adaptive Propagation Graph Neural Networks for Efficient
Graph Learning [65.08818785032719]
Graph Networks (GNNs) have achieved great success in processing graph data by extracting and propagating structure-aware features.
Recently the field has advanced from local propagation schemes that focus on local neighbors towards extended propagation schemes that can directly deal with extended neighbors consisting of both local and high-order neighbors.
Despite the impressive performance, existing approaches are still insufficient to build an efficient and learnable extended propagation scheme that can adaptively adjust the influence of local and high-order neighbors.
arXiv Detail & Related papers (2021-12-02T10:35:33Z) - Graph Trend Networks for Recommendations [34.06649831739749]
The key of recommender systems is to predict how likely users will interact with items based on their historical online behaviors.
To exploit these user-item interactions, there are increasing efforts on considering the user-item interactions as a user-item bipartite graph.
Despite their success, most existing GNN-based recommender systems overlook the existence of interactions caused by unreliable behaviors.
We propose the Graph Trend Networks for recommendations (GTN) with principled designs that can capture the adaptive reliability of the interactions.
arXiv Detail & Related papers (2021-08-12T06:09:18Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.