HELPNet: Hierarchical Perturbations Consistency and Entropy-guided Ensemble for Scribble Supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2412.18738v1
- Date: Wed, 25 Dec 2024 01:52:01 GMT
- Title: HELPNet: Hierarchical Perturbations Consistency and Entropy-guided Ensemble for Scribble Supervised Medical Image Segmentation
- Authors: Xiao Zhang, Shaoxuan Wu, Peilin Zhang, Zhuo Jin, Xiaosong Xiong, Qirong Bu, Jingkun Chen, Jun Feng,
- Abstract summary: We propose HELPNet, a novel scribble-based weakly supervised segmentation framework.
HELPNet integrates three modules to bridge the gap between annotation efficiency and segmentation performance.
HELPNet significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation.
- Score: 4.034121387622003
- License:
- Abstract: Creating fully annotated labels for medical image segmentation is prohibitively time-intensive and costly, emphasizing the necessity for innovative approaches that minimize reliance on detailed annotations. Scribble annotations offer a more cost-effective alternative, significantly reducing the expenses associated with full annotations. However, scribble annotations offer limited and imprecise information, failing to capture the detailed structural and boundary characteristics necessary for accurate organ delineation. To address these challenges, we propose HELPNet, a novel scribble-based weakly supervised segmentation framework, designed to bridge the gap between annotation efficiency and segmentation performance. HELPNet integrates three modules. The Hierarchical perturbations consistency (HPC) module enhances feature learning by employing density-controlled jigsaw perturbations across global, local, and focal views, enabling robust modeling of multi-scale structural representations. Building on this, the Entropy-guided pseudo-label (EGPL) module evaluates the confidence of segmentation predictions using entropy, generating high-quality pseudo-labels. Finally, the structural prior refinement (SPR) module incorporates connectivity and bounded priors to enhance the precision and reliability and pseudo-labels. Experimental results on three public datasets ACDC, MSCMRseg, and CHAOS show that HELPNet significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation and achieves performance comparable to fully supervised methods. The code is available at https://github.com/IPMI-NWU/HELPNet.
Related papers
- ERANet: Edge Replacement Augmentation for Semi-Supervised Meniscus Segmentation with Prototype Consistency Alignment and Conditional Self-Training [13.530502204769807]
We propose ERANet, a semi-supervised framework for meniscus segmentation.
ERANet integrates edge replacement augmentation (ERA), prototype consistency alignment (PCA), and a conditional self-training (CST) strategy.
We validated ERANet on 3D Double Echo Steady State (DESS) and 3D Fast/Turbo Spin Echo (FSE/TSE) MRI sequences.
arXiv Detail & Related papers (2025-02-11T07:49:31Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Weakly-Supervised Cross-Domain Segmentation of Electron Microscopy with Sparse Point Annotation [1.124958340749622]
We introduce a multitask learning framework to leverage correlations among the counting, detection, and segmentation tasks.
We develop a cross-position cut-and-paste for label augmentation and an entropy-based pseudo-label selection.
The proposed model is capable of significantly outperforming UDA methods and produces comparable performance as the supervised counterpart.
arXiv Detail & Related papers (2024-03-31T12:22:23Z) - AttenScribble: Attentive Similarity Learning for Scribble-Supervised
Medical Image Segmentation [5.8447004333496855]
In this paper, we present a straightforward yet effective scribble supervised learning framework.
We create a pluggable spatial self-attention module which could be attached on top of any internal feature layers of arbitrary fully convolutional network (FCN) backbone.
This attentive similarity leads to a novel regularization loss that imposes consistency between segmentation prediction and visual affinity.
arXiv Detail & Related papers (2023-12-11T18:42:18Z) - Hierarchical State Abstraction Based on Structural Information
Principles [70.24495170921075]
We propose a novel mathematical Structural Information principles-based State Abstraction framework, namely SISA, from the information-theoretic perspective.
SISA is a general framework that can be flexibly integrated with different representation-learning objectives to improve their performances further.
arXiv Detail & Related papers (2023-04-24T11:06:52Z) - Unifying and Personalizing Weakly-supervised Federated Medical Image
Segmentation via Adaptive Representation and Aggregation [1.121358474059223]
Federated learning (FL) enables multiple sites to collaboratively train powerful deep models without compromising data privacy and security.
Weakly supervised segmentation, which uses sparsely-grained supervision, is increasingly being paid attention to due to its great potential of reducing annotation costs.
We propose a novel personalized FL framework for medical image segmentation, named FedICRA, which uniformly leverages heterogeneous weak supervision.
arXiv Detail & Related papers (2023-04-12T06:32:08Z) - Open-vocabulary Panoptic Segmentation with Embedding Modulation [71.15502078615587]
Open-vocabulary image segmentation is attracting increasing attention due to its critical applications in the real world.
Traditional closed-vocabulary segmentation methods are not able to characterize novel objects, whereas several recent open-vocabulary attempts obtain unsatisfactory results.
We propose OPSNet, an omnipotent and data-efficient framework for Open-vocabulary Panopticon.
arXiv Detail & Related papers (2023-03-20T17:58:48Z) - Progressive Learning with Cross-Window Consistency for Semi-Supervised
Semantic Segmentation [40.00721341952556]
Cross-window consistency (CWC) is helpful in comprehensively extracting auxiliary supervision from unlabeled data.
We propose a novel CWC-driven progressive learning framework to optimize the deep network by mining weak-to-strong constraints from massive unlabeled data.
In addition, we propose a dynamic pseudo-label memory bank (DPM) to provide high-consistency and high-reliability pseudo-labels.
arXiv Detail & Related papers (2022-11-22T17:31:43Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
segmentation-based scene text detection methods have drawn extensive attention in the scene text detection field.
We propose a Differentiable Binarization (DB) module that integrates the binarization process into a segmentation network.
An efficient Adaptive Scale Fusion (ASF) module is proposed to improve the scale robustness by fusing features of different scales adaptively.
arXiv Detail & Related papers (2022-02-21T15:30:14Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
We develop a semi-supervised learning framework based on a teacher-student fashion for organ and lesion segmentation.
We show our model is robust to the quality of bounding box and achieves comparable performance compared with full-supervised learning methods.
arXiv Detail & Related papers (2020-10-23T07:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.