ERANet: Edge Replacement Augmentation for Semi-Supervised Meniscus Segmentation with Prototype Consistency Alignment and Conditional Self-Training
- URL: http://arxiv.org/abs/2502.07331v1
- Date: Tue, 11 Feb 2025 07:49:31 GMT
- Title: ERANet: Edge Replacement Augmentation for Semi-Supervised Meniscus Segmentation with Prototype Consistency Alignment and Conditional Self-Training
- Authors: Siyue Li, Yongcheng Yao, Junru Zhong, Shutian Zhao, Yudong Zhang, Shuihua Wang, Jin Hong, Weitian Chen,
- Abstract summary: We propose ERANet, a semi-supervised framework for meniscus segmentation.
ERANet integrates edge replacement augmentation (ERA), prototype consistency alignment (PCA), and a conditional self-training (CST) strategy.
We validated ERANet on 3D Double Echo Steady State (DESS) and 3D Fast/Turbo Spin Echo (FSE/TSE) MRI sequences.
- Score: 13.530502204769807
- License:
- Abstract: Manual segmentation is labor-intensive, and automatic segmentation remains challenging due to the inherent variability in meniscal morphology, partial volume effects, and low contrast between the meniscus and surrounding tissues. To address these challenges, we propose ERANet, an innovative semi-supervised framework for meniscus segmentation that effectively leverages both labeled and unlabeled images through advanced augmentation and learning strategies. ERANet integrates three key components: edge replacement augmentation (ERA), prototype consistency alignment (PCA), and a conditional self-training (CST) strategy within a mean teacher architecture. ERA introduces anatomically relevant perturbations by simulating meniscal variations, ensuring that augmentations align with the structural context. PCA enhances segmentation performance by aligning intra-class features and promoting compact, discriminative feature representations, particularly in scenarios with limited labeled data. CST improves segmentation robustness by iteratively refining pseudo-labels and mitigating the impact of label noise during training. Together, these innovations establish ERANet as a robust and scalable solution for meniscus segmentation, effectively addressing key barriers to practical implementation. We validated ERANet comprehensively on 3D Double Echo Steady State (DESS) and 3D Fast/Turbo Spin Echo (FSE/TSE) MRI sequences. The results demonstrate the superior performance of ERANet compared to state-of-the-art methods. The proposed framework achieves reliable and accurate segmentation of meniscus structures, even when trained on minimal labeled data. Extensive ablation studies further highlight the synergistic contributions of ERA, PCA, and CST, solidifying ERANet as a transformative solution for semi-supervised meniscus segmentation in medical imaging.
Related papers
- HELPNet: Hierarchical Perturbations Consistency and Entropy-guided Ensemble for Scribble Supervised Medical Image Segmentation [4.034121387622003]
We propose HELPNet, a novel scribble-based weakly supervised segmentation framework.
HELPNet integrates three modules to bridge the gap between annotation efficiency and segmentation performance.
HELPNet significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation.
arXiv Detail & Related papers (2024-12-25T01:52:01Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - ECLIPSE: Efficient Continual Learning in Panoptic Segmentation with Visual Prompt Tuning [54.68180752416519]
Panoptic segmentation is a cutting-edge computer vision task.
We introduce a novel and efficient method for continual panoptic segmentation based on Visual Prompt Tuning, dubbed ECLIPSE.
Our approach involves freezing the base model parameters and fine-tuning only a small set of prompt embeddings, addressing both catastrophic forgetting and plasticity.
arXiv Detail & Related papers (2024-03-29T11:31:12Z) - SegMatch: A semi-supervised learning method for surgical instrument
segmentation [10.223709180135419]
We propose SegMatch, a semi supervised learning method to reduce the need for expensive annotation for laparoscopic and robotic surgical images.
SegMatch builds on FixMatch, a widespread semi supervised classification pipeline combining consistency regularization and pseudo labelling.
Our results demonstrate that adding unlabelled data for training purposes allows us to surpass the performance of fully supervised approaches.
arXiv Detail & Related papers (2023-08-09T21:30:18Z) - From Sparse to Precise: A Practical Editing Approach for Intracardiac
Echocardiography Segmentation [2.6910401398827117]
We propose an interactive editing framework that allows users to edit segmentation output by drawing scribbles on a 2D frame.
Our framework accommodates multiple edits to the segmentation output in a sequential manner without compromising previous edits.
arXiv Detail & Related papers (2023-03-20T11:47:02Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Semi-Supervised Confidence-Level-based Contrastive Discrimination for
Class-Imbalanced Semantic Segmentation [1.713291434132985]
We have proposed a semi-supervised contrastive learning framework for the task of class-imbalanced semantic segmentation.
Our proposed method can provide satisfactory segmentation results with even 3.5% labeled data.
arXiv Detail & Related papers (2022-11-28T04:58:27Z) - Flip Learning: Erase to Segment [65.84901344260277]
Weakly-supervised segmentation (WSS) can help reduce time-consuming and cumbersome manual annotation.
We propose a novel and general WSS framework called Flip Learning, which only needs the box annotation.
Our proposed approach achieves competitive performance and shows great potential to narrow the gap between fully-supervised and weakly-supervised learning.
arXiv Detail & Related papers (2021-08-02T09:56:10Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
We propose a simple yet effective semi-supervised learning framework for semantic segmentation.
A set of simple design and training techniques can collectively improve the performance of semi-supervised semantic segmentation significantly.
Our method achieves state-of-the-art results in the semi-supervised settings on the Cityscapes and Pascal VOC datasets.
arXiv Detail & Related papers (2021-04-15T06:01:39Z) - InverseForm: A Loss Function for Structured Boundary-Aware Segmentation [80.39674800972182]
We present a novel boundary-aware loss term for semantic segmentation using an inverse-transformation network.
This plug-in loss term complements the cross-entropy loss in capturing boundary transformations.
We analyze the quantitative and qualitative effects of our loss function on three indoor and outdoor segmentation benchmarks.
arXiv Detail & Related papers (2021-04-06T18:52:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.