論文の概要: DebiasDiff: Debiasing Text-to-image Diffusion Models with Self-discovering Latent Attribute Directions
- arxiv url: http://arxiv.org/abs/2412.18810v1
- Date: Wed, 25 Dec 2024 07:30:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:26:40.206221
- Title: DebiasDiff: Debiasing Text-to-image Diffusion Models with Self-discovering Latent Attribute Directions
- Title(参考訳): DebiasDiff: 自己発見潜在属性指示によるテキストと画像の拡散モデルのデバイアス
- Authors: Yilei Jiang, Weihong Li, Yiyuan Zhang, Minghong Cai, Xiangyu Yue,
- Abstract要約: DebiasDiffは、自己発見方法で属性潜在方向を学習するプラグイン・アンド・プレイ方式である。
本手法は,他のDMと軽量かつ容易に統合可能でありながら,DMの複数の属性を同時にデバイアスすることが可能である。
- 参考スコア(独自算出の注目度): 16.748044041907367
- License:
- Abstract: While Diffusion Models (DM) exhibit remarkable performance across various image generative tasks, they nonetheless reflect the inherent bias presented in the training set. As DMs are now widely used in real-world applications, these biases could perpetuate a distorted worldview and hinder opportunities for minority groups. Existing methods on debiasing DMs usually requires model re-training with a human-crafted reference dataset or additional classifiers, which suffer from two major limitations: (1) collecting reference datasets causes expensive annotation cost; (2) the debiasing performance is heavily constrained by the quality of the reference dataset or the additional classifier. To address the above limitations, we propose DebiasDiff, a plug-and-play method that learns attribute latent directions in a self-discovering manner, thus eliminating the reliance on such reference dataset. Specifically, DebiasDiff consists of two parts: a set of attribute adapters and a distribution indicator. Each adapter in the set aims to learn an attribute latent direction, and is optimized via noise composition through a self-discovering process. Then, the distribution indicator is multiplied by the set of adapters to guide the generation process towards the prescribed distribution. Our method enables debiasing multiple attributes in DMs simultaneously, while remaining lightweight and easily integrable with other DMs, eliminating the need for re-training. Extensive experiments on debiasing gender, racial, and their intersectional biases show that our method outperforms previous SOTA by a large margin.
- Abstract(参考訳): 拡散モデル(DM)は、様々な画像生成タスクにおいて顕著な性能を示すが、それでもトレーニングセットに現れる固有のバイアスを反映している。
現在、DMは現実世界のアプリケーションで広く使われているため、これらのバイアスは歪んだ世界観を永続させ、少数民族の機会を妨げる可能性がある。
1)参照データセットの収集は高価なアノテーションコストを引き起こす; (2) バイアス性能は参照データセットの品質や追加分類器の品質に強く制約される。
上記の制約に対処するために,属性潜在方向を自己発見的に学習し,参照データセットへの依存をなくすプラグイン・アンド・プレイ方式であるDebiasDiffを提案する。
具体的には、DebiasDiffは属性アダプタのセットと配布インジケータの2つの部分で構成される。
セットの各アダプタは属性遅延方向を学習することを目的としており、自己発見プロセスを通じてノイズ合成によって最適化される。
そして、分布インジケータをアダプタの集合に乗じて生成プロセスを所定の分布へ導く。
本手法は,複数属性のDMを同時に除去すると同時に,他のDMと軽量で容易に統合可能であり,再学習の必要性を排除している。
性別、人種、およびそれらの交叉バイアスの偏りに関する大規模な実験は、我々の手法が従来のSOTAよりも大きなマージンで優れていることを示している。
関連論文リスト
- Disentangling Disentangled Representations: Towards Improved Latent Units via Diffusion Models [3.1923251959845214]
Disentangled Expression Learning (DRL) は、観測されたデータをコア固有の要素に分解して、データの深い理解を目指している。
近年,教師なしDRLにおける拡散モデル(DM)の利用について,限定的な調査が行われている。
より解釈可能なDRLに対して属性分離型潜在ユニットを強制する動的ガウスアンチョリングを提案する。
また、よりDRLフレンドリーなU-Netを容易に修正できるスキップドロップアウト手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T11:05:09Z) - Efficient Distribution Matching of Representations via Noise-Injected Deep InfoMax [73.03684002513218]
我々はDeep InfoMax(DIM)を拡張し、学習した表現を選択された事前分布に自動マッチングできるようにする。
このような修正により、一様かつ通常に分散した表現を学習できることを示す。
その結果,下流作業における性能とDMの品質の中間的なトレードオフが示唆された。
論文 参考訳(メタデータ) (2024-10-09T15:40:04Z) - DANCE: Dual-View Distribution Alignment for Dataset Condensation [39.08022095906364]
我々は、データセットのコンディエンテーション(DANCE)のためのDMベースの新しいDual-view Distribution AligNmentを提案する。
具体的には、内部クラスの観点から複数の「中間エンコーダ」を構築し、擬似的な長期分布アライメントを行う。
クラス間の観点からは,分布キャリブレーションを行うために専門家モデルを用いる。
論文 参考訳(メタデータ) (2024-06-03T07:22:17Z) - Balancing Act: Distribution-Guided Debiasing in Diffusion Models [31.38505986239798]
拡散モデル(DM)は、前例のない画像生成能力を持つ強力な生成モデルとして登場した。
DMはトレーニングデータセットに存在するバイアスを反映します。
本稿では、追加データやモデル再学習に頼ることなく、DMをデバイアスする手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T09:53:17Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - IBADR: an Iterative Bias-Aware Dataset Refinement Framework for
Debiasing NLU models [52.03761198830643]
IBADR(Iterative Bias-Aware dataset Refinement framework)を提案する。
まず、プール内のサンプルのバイアス度を定量化するために浅いモデルを訓練する。
次に、各サンプルにバイアス度を表すバイアス指標をペアにして、これらの拡張サンプルを使用してサンプルジェネレータを訓練する。
このようにして、このジェネレータは、バイアスインジケータとサンプルの対応関係を効果的に学習することができる。
論文 参考訳(メタデータ) (2023-11-01T04:50:38Z) - Data augmentation and explainability for bias discovery and mitigation
in deep learning [0.0]
この論文は、ディープニューラルネットワークにおけるバイアスの影響を調査し、モデルパフォーマンスへの影響を減らす方法を提案する。
最初の部分は、データやモデルのバイアスやエラーの潜在的な原因を分類し、記述することから始まり、特に機械学習パイプラインのバイアスに焦点を当てている。
次の章では、予測と制御を正当化し、モデルを改善する手段として、説明可能なAIの分類と方法について概説する。
論文 参考訳(メタデータ) (2023-08-18T11:02:27Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。