論文の概要: TPCH: Tensor-interacted Projection and Cooperative Hashing for Multi-view Clustering
- arxiv url: http://arxiv.org/abs/2412.18847v1
- Date: Wed, 25 Dec 2024 09:22:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:35.866645
- Title: TPCH: Tensor-interacted Projection and Cooperative Hashing for Multi-view Clustering
- Title(参考訳): TPCH:マルチビュークラスタリングのためのテンソル相互作用投影と協調ハッシュ
- Authors: Zhongwen Wang, Xingfeng Li, Yinghui Sun, Quansen Sun, Yuan Sun, Han Ling, Jian Dai, Zhenwen Ren,
- Abstract要約: 実験の結果,TPCHは5つの大規模マルチビューデータセット上でのクラスタリングにおいて,最先端の手法よりも大幅に優れていた。
CPU時間の観点からは、TPCHは最も先進的な現在の手法と比較してかなり加速する。
- 参考スコア(独自算出の注目度): 22.87957076772174
- License:
- Abstract: In recent years, anchor and hash-based multi-view clustering methods have gained attention for their efficiency and simplicity in handling large-scale data. However, existing methods often overlook the interactions among multi-view data and higher-order cooperative relationships during projection, negatively impacting the quality of hash representation in low-dimensional spaces, clustering performance, and sensitivity to noise. To address this issue, we propose a novel approach named Tensor-Interacted Projection and Cooperative Hashing for Multi-View Clustering(TPCH). TPCH stacks multiple projection matrices into a tensor, taking into account the synergies and communications during the projection process. By capturing higher-order multi-view information through dual projection and Hamming space, TPCH employs an enhanced tensor nuclear norm to learn more compact and distinguishable hash representations, promoting communication within and between views. Experimental results demonstrate that this refined method significantly outperforms state-of-the-art methods in clustering on five large-scale multi-view datasets. Moreover, in terms of CPU time, TPCH achieves substantial acceleration compared to the most advanced current methods. The code is available at \textcolor{red}{\url{https://github.com/jankin-wang/TPCH}}.
- Abstract(参考訳): 近年,大規模データ処理の効率化と簡易化に注目が集まっている。
しかし、既存の手法では、投影中の多視点データと高次協調関係の相互作用を見落とし、低次元空間におけるハッシュ表現の品質、クラスタリング性能、ノイズに対する感受性に悪影響を及ぼすことが多い。
本稿では,マルチビュークラスタリング(TPCH)のためのTensor-Interacted Projection and Cooperative Hashingという新しい手法を提案する。
TPCHは複数の射影行列をテンソルに積み重ね、射影過程のシナジーと通信を考慮に入れている。
二重射影とハミング空間を通して高階のマルチビュー情報をキャプチャすることで、TPCHはよりコンパクトで識別可能なハッシュ表現を学習し、ビュー内およびビュー間の通信を促進するために拡張テンソル核ノルムを使用する。
提案手法は,5つの大規模マルチビューデータセット上でのクラスタリングにおいて,最先端の手法を著しく上回ることを示す。
さらに、CPU時間の観点からは、TPCHは最も先進的な現在の手法と比較してかなり加速する。
コードは \textcolor{red}{\url{https://github.com/jankin-wang/TPCH}} で公開されている。
関連論文リスト
- S^2MVTC: a Simple yet Efficient Scalable Multi-View Tensor Clustering [38.35594663863098]
6つの大規模マルチビューデータセットの実験結果から、S2MVTCはクラスタリング性能とCPU実行時間において、最先端のアルゴリズムを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-14T05:00:29Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
我々は、Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)という新しいマルチビュークラスタリングモデルを提案する。
提案手法の主な目的は,2つの異なる空間における協調学習を活用することにより,クラスタリング性能を向上させることである。
我々のアルゴリズムは近似線形計算複雑性を持ち、大規模データセットへの適用が成功することを保証している。
論文 参考訳(メタデータ) (2024-01-28T16:30:13Z) - Consistency Enhancement-Based Deep Multiview Clustering via Contrastive Learning [16.142448870120027]
コントラスト学習(CCEC)による一貫した拡張型ディープMVC法を提案する。
具体的には、複数のビュー間の一貫性のある情報を保持するために、セマンティック接続ブロックを特徴表現に組み込む。
5つのデータセットで行った実験は、最先端(SOTA)手法と比較して、本手法の有効性と優位性を示した。
論文 参考訳(メタデータ) (2024-01-23T10:56:01Z) - Efficient and Effective Deep Multi-view Subspace Clustering [9.6753782215283]
E$2$MVSC(Efficient and Effective Deep Multi-View Subspace Clustering)と呼ばれる新しいディープフレームワークを提案する。
パラメータ化されたFC層の代わりに、より計算効率のよいサンプル数からネットワークパラメータスケールを分離するRelation-Metric Netを設計する。
E$2$MVSCは既存のメソッドに匹敵する結果を出し、様々なタイプのマルチビューデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-15T03:08:25Z) - DealMVC: Dual Contrastive Calibration for Multi-view Clustering [78.54355167448614]
マルチビュークラスタリングのための新しいデュアルコントラストキャリブレーションネットワーク(DealMVC)を提案する。
まず、グローバルなクロスビュー特徴を得るための融合機構を設計し、その上で、ビュー特徴類似性グラフと高信頼な擬ラベルグラフを整列させることにより、グローバルなコントラストキャリブレーション損失を提案する。
トレーニング手順の間、対話型クロスビュー機能は、ローカルレベルとグローバルレベルの両方で共同最適化される。
論文 参考訳(メタデータ) (2023-08-17T14:14:28Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
線形複雑度に近い高速マルチビュークラスタリングのための適応重み付き積分空間(AIMC)を提案する。
特に、ビュー生成モデルは、潜在積分空間からのビュー観測を再構成するために設計されている。
いくつかの実世界のデータセットで実施された実験は、提案したAIMC法の優位性を確認した。
論文 参考訳(メタデータ) (2022-08-25T05:47:39Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Multi-view Hierarchical Clustering [12.01031088378791]
マルチビュークラスタリングは、マルチビューデータによるクラスタリング結果の促進を目的としている。
複数レベルの粒度でマルチビューデータを分割するマルチビュー階層クラスタリング(MHC)を提案する。
MHCはパラメータ選択なしで現実世界のアプリケーションに容易に効果的に利用することができる。
論文 参考訳(メタデータ) (2020-10-15T07:46:18Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
重複する部分グラフを多数必要とせず,完全に学習可能なクラスタリングフレームワークを提案する。
提案手法はクラスタリングの精度を大幅に向上させ,その上で訓練した認識モデルの性能を向上させるが,既存の教師付き手法に比べて桁違いに効率的である。
論文 参考訳(メタデータ) (2020-04-01T13:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。