論文の概要: TSceneJAL: Joint Active Learning of Traffic Scenes for 3D Object Detection
- arxiv url: http://arxiv.org/abs/2412.18870v1
- Date: Wed, 25 Dec 2024 11:07:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:26:36.987171
- Title: TSceneJAL: Joint Active Learning of Traffic Scenes for 3D Object Detection
- Title(参考訳): TSceneJAL:3次元物体検出のための交通シーンの能動学習
- Authors: Chenyang Lei, Meiying Zhang, Weiyuan Peng, Qi Hao, Chengzhong Xu, Chunlin Ji, Guang Zhou,
- Abstract要約: TSceneJALフレームワークはラベル付きデータとラベルなしデータの両方から、バランスのとれた、多様性のある、複雑なトラフィックシーンを効率的にサンプリングすることができる。
提案手法は,3次元オブジェクト検出タスクにおける既存の最先端手法よりも12%向上した。
- 参考スコア(独自算出の注目度): 26.059907173437114
- License:
- Abstract: Most autonomous driving (AD) datasets incur substantial costs for collection and labeling, inevitably yielding a plethora of low-quality and redundant data instances, thereby compromising performance and efficiency. Many applications in AD systems necessitate high-quality training datasets using both existing datasets and newly collected data. In this paper, we propose a traffic scene joint active learning (TSceneJAL) framework that can efficiently sample the balanced, diverse, and complex traffic scenes from both labeled and unlabeled data. The novelty of this framework is threefold: 1) a scene sampling scheme based on a category entropy, to identify scenes containing multiple object classes, thus mitigating class imbalance for the active learner; 2) a similarity sampling scheme, estimated through the directed graph representation and a marginalize kernel algorithm, to pick sparse and diverse scenes; 3) an uncertainty sampling scheme, predicted by a mixture density network, to select instances with the most unclear or complex regression outcomes for the learner. Finally, the integration of these three schemes in a joint selection strategy yields an optimal and valuable subdataset. Experiments on the KITTI, Lyft, nuScenes and SUScape datasets demonstrate that our approach outperforms existing state-of-the-art methods on 3D object detection tasks with up to 12% improvements.
- Abstract(参考訳): ほとんどの自律運転(AD)データセットは、コレクションとラベル付けにかなりのコストを要し、必然的に低品質で冗長なデータインスタンスを多用し、パフォーマンスと効率を損なう。
ADシステムの多くのアプリケーションは、既存のデータセットと新しく収集されたデータの両方を使用して、高品質なトレーニングデータセットを必要とする。
本稿では,ラベル付きデータとラベルなしデータの両方から,バランスの取れた,多様な,複雑なトラフィックシーンを効率的にサンプリングできる交通シーン共同アクティブラーニング(TSceneJAL)フレームワークを提案する。
このフレームワークの斬新さは3倍です。
1 カテゴリーエントロピーに基づくシーンサンプリング方式により、複数の対象クラスを含むシーンを識別し、アクティブ学習者に対するクラス不均衡を緩和する。
2 配向グラフ表現及び余分化カーネルアルゴリズムにより推定された類似性サンプリングスキームは、スパースで多様な場面を選択する。
3)混合密度ネットワークによって予測される不確実性サンプリングスキームは,学習者にとって最も不確実あるいは複雑な回帰結果を持つインスタンスを選択する。
最後に、これらの3つのスキームを共同選択戦略に統合すると、最適で価値のあるサブデータセットが得られる。
KITTI、Lyft、nuScenes、SUScapeデータセットの実験では、私たちのアプローチが3Dオブジェクト検出タスクにおける既存の最先端メソッドよりも最大12%改善されていることが示されています。
関連論文リスト
- Integrated Image-Text Based on Semi-supervised Learning for Small Sample Instance Segmentation [1.3157419797035321]
本稿では,既存情報の利用を最大化する観点から,新しいサンプルインスタンス分割法を提案する。
まず、ラベルのないデータを学習して擬似ラベルを生成し、利用可能なサンプルの数を増やすことで、モデルが完全に活用するのに役立つ。
第二に、テキストと画像の特徴を統合することにより、より正確な分類結果を得ることができる。
論文 参考訳(メタデータ) (2024-10-21T14:44:08Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Distribution Discrepancy and Feature Heterogeneity for Active 3D Object Detection [18.285299184361598]
LiDARベースの3Dオブジェクト検出は、自律走行とロボット工学の発展にとって重要な技術である。
DDFH(Dis Distribution Discrepancy and Feature Heterogeneity)と呼ばれる新しい効果的なアクティブラーニング手法を提案する。
幾何学的特徴とモデル埋め込みを同時に考慮し、インスタンスレベルとフレームレベルの両方の観点から情報を評価する。
論文 参考訳(メタデータ) (2024-09-09T08:26:11Z) - The Why, When, and How to Use Active Learning in Large-Data-Driven 3D
Object Detection for Safe Autonomous Driving: An Empirical Exploration [1.2815904071470705]
エントロピークエリは、リソース制約のある環境でモデル学習を強化するデータを選択するための有望な戦略である。
この結果から,エントロピークエリは資源制約のある環境でのモデル学習を促進するデータ選択に有望な戦略であることが示唆された。
論文 参考訳(メタデータ) (2024-01-30T00:14:13Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training [44.790636524264]
ポイント・プロンプト・トレーニング(Point Prompt Training)は、3D表現学習の文脈におけるマルチデータセットのシナジスティック学習のための新しいフレームワークである。
シナジスティック学習に関連する負の移動を克服し、一般化可能な表現を生成する。
教師付きマルチデータセットトレーニングを備えた1つの重み付きモデルを用いて、各データセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-08-18T17:59:57Z) - MV-JAR: Masked Voxel Jigsaw and Reconstruction for LiDAR-Based
Self-Supervised Pre-Training [58.07391711548269]
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training
Masked Voxel Jigsaw and Reconstruction (MV-JAR) method for LiDAR-based self-supervised pre-training
論文 参考訳(メタデータ) (2023-03-23T17:59:02Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
半教師付き学習(SSL)では、ラベル付きデータと同じ分布からラベル付きデータが引き出されることが一般的である。
サンプル重み付けによりラベルなしデータを選択的に活用することを提案する。
論文 参考訳(メタデータ) (2022-05-02T16:09:17Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。