論文の概要: MedHallBench: A New Benchmark for Assessing Hallucination in Medical Large Language Models
- arxiv url: http://arxiv.org/abs/2412.18947v1
- Date: Wed, 25 Dec 2024 16:51:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:29:03.417578
- Title: MedHallBench: A New Benchmark for Assessing Hallucination in Medical Large Language Models
- Title(参考訳): MedHallBench: 医学大言語モデルにおける幻覚評価のための新しいベンチマーク
- Authors: Kaiwen Zuo, Yirui Jiang,
- Abstract要約: 医療大言語モデル(MLLM)は医療応用の可能性を示している。
幻覚に対する寛容性は、患者医療に重大なリスクをもたらす。
本稿では,MLLMにおける幻覚の評価と緩和のためのベンチマークフレームワークであるMedHallBenchを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Medical Large Language Models (MLLMs) have demonstrated potential in healthcare applications, yet their propensity for hallucinations -- generating medically implausible or inaccurate information -- presents substantial risks to patient care. This paper introduces MedHallBench, a comprehensive benchmark framework for evaluating and mitigating hallucinations in MLLMs. Our methodology integrates expert-validated medical case scenarios with established medical databases to create a robust evaluation dataset. The framework employs a sophisticated measurement system that combines automated ACHMI (Automatic Caption Hallucination Measurement in Medical Imaging) scoring with rigorous clinical expert evaluations and utilizes reinforcement learning methods to achieve automatic annotation. Through an optimized reinforcement learning from human feedback (RLHF) training pipeline specifically designed for medical applications, MedHallBench enables thorough evaluation of MLLMs across diverse clinical contexts while maintaining stringent accuracy standards. We conducted comparative experiments involving various models, utilizing the benchmark to establish a baseline for widely adopted large language models (LLMs). Our findings indicate that ACHMI provides a more nuanced understanding of the effects of hallucinations compared to traditional metrics, thereby highlighting its advantages in hallucination assessment. This research establishes a foundational framework for enhancing MLLMs' reliability in healthcare settings and presents actionable strategies for addressing the critical challenge of AI hallucinations in medical applications.
- Abstract(参考訳): 医療大言語モデル(MLLM)は、医療応用の可能性を示しているが、その幻覚(医学的に不確実または不正確な情報を生み出す)の確率は、患者医療に重大なリスクをもたらす。
本稿では,MLLMにおける幻覚の評価と緩和のためのベンチマークフレームワークであるMedHallBenchを紹介する。
本手法は,専門家が検証した医療ケースシナリオと確立された医療データベースを統合し,ロバストな評価データセットを作成する。
このフレームワークは、自動ACHMI(Automatic Caption Hallucination Measurement in Medical Imaging)スコアと厳格な臨床専門家評価を組み合わせ、自動アノテーションを実現するための強化学習手法を利用する。
医療応用に特化したRLHFトレーニングパイプラインから最適化された強化学習を通じて、MedHallBenchは、厳密な精度基準を維持しながら、さまざまな臨床状況におけるMLLMの徹底的な評価を可能にする。
我々は,様々なモデルを用いた比較実験を行い,ベンチマークを用いて広く採用されている大規模言語モデル(LLM)のベースラインを確立する。
以上の結果から,ACHMIは従来の測定値と比較して幻覚効果の微妙な理解を提供し,幻覚評価の利点を浮き彫りにした。
本研究は、医療におけるMLLMの信頼性を高めるための基盤的枠組みを確立し、医療応用におけるAI幻覚の重要な課題に対処するための実行可能な戦略を示す。
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBenchは、14のエキスパートによるコア臨床シナリオを備えた総合的なベンチマークである。
このベンチマークの信頼性はいくつかの点で確認されている。
論文 参考訳(メタデータ) (2024-10-04T15:15:36Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
臨床能力の5つの重要な側面にまたがって,大規模言語モデル(LLM)を評価するフレームワークであるMEDICを紹介する。
医療質問応答,安全性,要約,メモ生成,その他のタスクにおいて,MDDICを用いてLCMを評価する。
その結果, モデルサイズ, ベースライン, 医療用微調整モデル間の性能差が示され, 特定のモデル強度を必要とするアプリケーションに対して, モデル選択に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2024-09-11T14:44:51Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
大規模言語モデルは、一般的な医学的知識をエンコードする能力において有望な結果を示している。
内科的知識を活用しててててんかんの診断を行う技術について検討した。
論文 参考訳(メタデータ) (2024-07-03T11:02:12Z) - MedBench: A Comprehensive, Standardized, and Reliable Benchmarking System for Evaluating Chinese Medical Large Language Models [55.215061531495984]
メドベンチ(MedBench)は、中国の医学LLMの総合的、標準化され、信頼性の高いベンチマークシステムである。
まず、MedBenchは43の臨床専門分野をカバーするために、最大の評価データセット(300,901の質問)を組み立てる。
第3に、MedBenchは動的評価機構を実装し、ショートカット学習や解答記憶を防ぐ。
論文 参考訳(メタデータ) (2024-06-24T02:25:48Z) - A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models [57.88111980149541]
Asclepiusは、Med-MLLMの異なる医学的特長と診断能力で評価する、新しいMed-MLLMベンチマークである。
3つの基本原則に基づいて、アスクレピウスは15の医療専門分野を包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、3人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Evaluation of General Large Language Models in Contextually Assessing
Semantic Concepts Extracted from Adult Critical Care Electronic Health Record
Notes [17.648021186810663]
本研究の目的は,大規模言語モデル(LLM)の実際の臨床ノートの理解と処理における性能を評価することである。
GPTファミリーモデルは、コスト効率と時間節約能力によって証明された、かなりの効率性を示している。
論文 参考訳(メタデータ) (2024-01-24T16:52:37Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
大型言語モデル(LLM)はしばしば幻覚に悩まされ、過度に自信があるが誤った判断を下す。
本稿では,マルチターンコンサルテーションにおける仮想医師としてのLCMの実用能力を評価するための自動評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-05T09:24:48Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
大規模言語モデル(LLM)に基づくエンドツーエンド機械学習ソリューションを提案する。
KG構築プロセスで使用される物質は、疾患、因子、治療、および疾患を経験中に患者と共存する症状である。
提案手法の応用は加齢に伴う黄斑変性に対して実証される。
論文 参考訳(メタデータ) (2023-01-29T15:52:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。