MedHallBench: A New Benchmark for Assessing Hallucination in Medical Large Language Models
- URL: http://arxiv.org/abs/2412.18947v2
- Date: Fri, 03 Jan 2025 00:16:52 GMT
- Title: MedHallBench: A New Benchmark for Assessing Hallucination in Medical Large Language Models
- Authors: Kaiwen Zuo, Yirui Jiang,
- Abstract summary: Medical Large Language Models (MLLMs) have demonstrated potential in healthcare applications.
Their propensity for hallucinations presents substantial risks to patient care.
This paper introduces MedHallBench, a comprehensive benchmark framework for evaluating and mitigating hallucinations in MLLMs.
- Score: 0.0
- License:
- Abstract: Medical Large Language Models (MLLMs) have demonstrated potential in healthcare applications, yet their propensity for hallucinations -- generating medically implausible or inaccurate information -- presents substantial risks to patient care. This paper introduces MedHallBench, a comprehensive benchmark framework for evaluating and mitigating hallucinations in MLLMs. Our methodology integrates expert-validated medical case scenarios with established medical databases to create a robust evaluation dataset. The framework employs a sophisticated measurement system that combines automated ACHMI (Automatic Caption Hallucination Measurement in Medical Imaging) scoring with rigorous clinical expert evaluations and utilizes reinforcement learning methods to achieve automatic annotation. Through an optimized reinforcement learning from human feedback (RLHF) training pipeline specifically designed for medical applications, MedHallBench enables thorough evaluation of MLLMs across diverse clinical contexts while maintaining stringent accuracy standards. We conducted comparative experiments involving various models, utilizing the benchmark to establish a baseline for widely adopted large language models (LLMs). Our findings indicate that ACHMI provides a more nuanced understanding of the effects of hallucinations compared to traditional metrics, thereby highlighting its advantages in hallucination assessment. This research establishes a foundational framework for enhancing MLLMs' reliability in healthcare settings and presents actionable strategies for addressing the critical challenge of AI hallucinations in medical applications.
Related papers
- Fact or Guesswork? Evaluating Large Language Model's Medical Knowledge with Structured One-Hop Judgment [108.55277188617035]
Large language models (LLMs) have been widely adopted in various downstream task domains, but their ability to directly recall and apply factual medical knowledge remains under-explored.
Most existing medical QA benchmarks assess complex reasoning or multi-hop inference, making it difficult to isolate LLMs' inherent medical knowledge from their reasoning capabilities.
We introduce the Medical Knowledge Judgment, a dataset specifically designed to measure LLMs' one-hop factual medical knowledge.
arXiv Detail & Related papers (2025-02-20T05:27:51Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
We introduce MEDIC, a framework assessing Large Language Models (LLMs) across five critical dimensions of clinical competence.
We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks.
Results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths.
arXiv Detail & Related papers (2024-09-11T14:44:51Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - MedBench: A Comprehensive, Standardized, and Reliable Benchmarking System for Evaluating Chinese Medical Large Language Models [55.215061531495984]
"MedBench" is a comprehensive, standardized, and reliable benchmarking system for Chinese medical LLM.
First, MedBench assembles the largest evaluation dataset (300,901 questions) to cover 43 clinical specialties.
Third, MedBench implements dynamic evaluation mechanisms to prevent shortcut learning and answer remembering.
arXiv Detail & Related papers (2024-06-24T02:25:48Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Evaluation of General Large Language Models in Contextually Assessing
Semantic Concepts Extracted from Adult Critical Care Electronic Health Record
Notes [17.648021186810663]
The purpose of this study was to evaluate the performance of Large Language Models (LLMs) in understanding and processing real-world clinical notes.
The GPT family models have demonstrated considerable efficiency, evidenced by their cost-effectiveness and time-saving capabilities.
arXiv Detail & Related papers (2024-01-24T16:52:37Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
Large language models (LLMs) often suffer from hallucinations, leading to overly confident but incorrect judgments.
This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations.
arXiv Detail & Related papers (2023-09-05T09:24:48Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
We propose an end-to-end machine learning solution based on large language models (LLMs)
The entities used in the KG construction process are diseases, factors, treatments, as well as manifestations that coexist with the patient while experiencing the disease.
The application of the proposed methodology is demonstrated on age-related macular degeneration.
arXiv Detail & Related papers (2023-01-29T15:52:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.