論文の概要: Quantum memristors for neuromorphic quantum machine learning
- arxiv url: http://arxiv.org/abs/2412.18979v1
- Date: Wed, 25 Dec 2024 20:21:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:29:14.116913
- Title: Quantum memristors for neuromorphic quantum machine learning
- Title(参考訳): ニューロモルフィック量子機械学習のための量子メムリスタ
- Authors: Lucas Lamata,
- Abstract要約: 量子メムリスタは、同じ量子ハードウェアにおいて、測定とフィードフォワードによって提供される非線形性とユニタリ進化を結合する方法として期待されている。
量子機械学習のためのニューロモルフィック量子コンピューティングを効果的に展開する方法が有効である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum machine learning may permit to realize more efficient machine learning calculations with near-term quantum devices. Among the diverse quantum machine learning paradigms which are currently being considered, quantum memristors are promising as a way of combining, in the same quantum hardware, a unitary evolution with the nonlinearity provided by the measurement and feedforward. Thus, an efficient way of deploying neuromorphic quantum computing for quantum machine learning may be enabled.
- Abstract(参考訳): 量子機械学習は、短期量子デバイスを用いたより効率的な機械学習計算を実現することができる。
現在検討されている多様な量子機械学習パラダイムの中で、量子メムリスタは、同じ量子ハードウェアにおいて、測定とフィードフォワードによって提供される非線形性とユニタリ進化を結合する方法として期待されている。
したがって、量子機械学習のためのニューロモルフィック量子コンピューティングを効果的に展開する方法が期待できる。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
量子貯水池コンピューティング(Quantum reservoir computing)は、時間的機械学習のように、量子システム上で複雑でリッチなダイナミクスを使用するアプローチである。
これらの量子機械学習アプローチはすべて、実験的に実現可能であり、最先端の量子デバイスに有効である。
論文 参考訳(メタデータ) (2020-11-10T04:45:52Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
量子機械学習は、量子技術の中でエキサイティングで有望なパラダイムとして登場した。
本稿では,これらのトピックについて概観し,科学コミュニティが実施した関連研究について述べる。
論文 参考訳(メタデータ) (2020-04-25T07:45:20Z) - On quantum ensembles of quantum classifiers [0.0]
量子機械学習は、量子コンピュータの根底にある性質を利用して機械学習技術を強化する。
量子分類器の量子アンサンブルの具体的な実装は、精度重み付き量子アンサンブルと呼ばれ、完全に量子化することができる。
一方、一般的な量子アンサンブルフレームワークは、特に量子スピードアップを提供する有名なDeutsch-Jozsaアルゴリズムを含むことが示されている。
論文 参考訳(メタデータ) (2020-01-29T13:46:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。