論文の概要: Mask Factory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation
- arxiv url: http://arxiv.org/abs/2412.19080v1
- Date: Thu, 26 Dec 2024 06:37:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:26:31.996917
- Title: Mask Factory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation
- Title(参考訳): Mask Factory: ディコトコス画像セグメンテーションのための高品質な合成データ生成を目指して
- Authors: Haotian Qian, YD Chen, Shengtao Lou, Fahad Shahbaz Khan, Xiaogang Jin, Deng-Ping Fan,
- Abstract要約: Dichotomous Image (DIS) タスクは高度に正確なアノテーションを必要とする。
現在の生成モデルとテクニックは、シーンのずれ、ノイズによるエラー、限られたトレーニングサンプルの変動といった問題に苦慮している。
多様な正確なデータセットを生成するためのスケーラブルなソリューションを提供する。
- 参考スコア(独自算出の注目度): 70.95380821618711
- License:
- Abstract: Dichotomous Image Segmentation (DIS) tasks require highly precise annotations, and traditional dataset creation methods are labor intensive, costly, and require extensive domain expertise. Although using synthetic data for DIS is a promising solution to these challenges, current generative models and techniques struggle with the issues of scene deviations, noise-induced errors, and limited training sample variability. To address these issues, we introduce a novel approach, \textbf{\ourmodel{}}, which provides a scalable solution for generating diverse and precise datasets, markedly reducing preparation time and costs. We first introduce a general mask editing method that combines rigid and non-rigid editing techniques to generate high-quality synthetic masks. Specially, rigid editing leverages geometric priors from diffusion models to achieve precise viewpoint transformations under zero-shot conditions, while non-rigid editing employs adversarial training and self-attention mechanisms for complex, topologically consistent modifications. Then, we generate pairs of high-resolution image and accurate segmentation mask using a multi-conditional control generation method. Finally, our experiments on the widely-used DIS5K dataset benchmark demonstrate superior performance in quality and efficiency compared to existing methods. The code is available at \url{https://qian-hao-tian.github.io/MaskFactory/}.
- Abstract(参考訳): Dichotomous Image Segmentation (DIS)タスクは高度に正確なアノテーションを必要とし、従来のデータセット作成メソッドは労働集約的でコストがかかり、広範なドメインの専門知識を必要とする。
DISのために合成データを使用することはこれらの課題に対する有望な解決策であるが、現在の生成モデルとテクニックは、シーンのずれ、ノイズによるエラー、限られたトレーニングサンプルの変動といった問題に苦慮している。
これらの問題に対処するために、多様な正確なデータセットを生成するスケーラブルなソリューションを提供する新しいアプローチである \textbf{\ourmodel{}} を導入し、準備時間とコストを大幅に削減する。
まず,硬質・非剛質な編集技術を組み合わせて高品質な合成マスクを生成する汎用マスク編集手法を提案する。
特に、厳密な編集は拡散モデルからの幾何的先行を生かし、ゼロショット条件下で正確な視点変換を達成する。
そして,多条件制御生成手法を用いて,高解像度画像と高精度セグメンテーションマスクのペアを生成する。
最後に、広く使われているdis5Kデータセットのベンチマーク実験により、既存の手法と比較して、品質と効率の優れた性能を示した。
コードは \url{https://qian-hao-tian.github.io/MaskFactory/} で公開されている。
関連論文リスト
- Free-Mask: A Novel Paradigm of Integration Between the Segmentation Diffusion Model and Image Editing to Improve Segmentation Ability [5.767984430681467]
セグメンテーションのための拡散モデルと高度な画像編集機能を組み合わせたフレームワーク textbfFree-Mask を提案する。
その結果、textbfFree-Mask は VOC 2012 ベンチマークで未確認のクラスに対して、新しい最先端の結果を達成していることがわかった。
論文 参考訳(メタデータ) (2024-11-04T05:39:01Z) - Unsupervised Modality Adaptation with Text-to-Image Diffusion Models for Semantic Segmentation [54.96563068182733]
セグメンテーションタスクのためのテキスト・ツー・イメージ拡散モデル(MADM)を用いたモダリティ適応を提案する。
MADMは、広範囲な画像とテキストのペアで事前訓練されたテキストと画像の拡散モデルを使用して、モデルの相互モダリティ能力を向上する。
我々は,MADMが画像から深度,赤外線,イベントのモダリティといった様々なモダリティタスクにまたがって,最先端の適応性能を実現することを示す。
論文 参考訳(メタデータ) (2024-10-29T03:49:40Z) - Adapting Diffusion Models for Improved Prompt Compliance and Controllable Image Synthesis [43.481539150288434]
この作品は新しい家族を紹介します。
因子グラフ拡散モデル(FG-DM)
FG-DMは結合分布をモデル化する。
イメージやコンディショニング変数、例えばセマンティック、スケッチなどです。
因子グラフ分解による 奥行きや正常な地図です
論文 参考訳(メタデータ) (2024-10-29T00:54:00Z) - High-Precision Dichotomous Image Segmentation via Probing Diffusion Capacity [69.32473738284374]
本稿では,拡散モデルにおける事前学習されたU-Netのポテンシャルを利用する拡散駆動セグメンテーションモデルDiffDISを提案する。
SDモデルに先立って、頑健な一般化機能とリッチで多目的な画像表現を活用することにより、高忠実で詳細な生成を保ちながら、推論時間を著しく短縮する。
DIS5Kデータセットの実験は、DiffDISの優位性を示し、合理化された推論プロセスを通じて最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-10-14T02:49:23Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
連続的テスト時間適応(CTTA)は、ソース事前学習モデルから目標分布の連続的な変化に移行するために提案される。
提案手法は,CTTAタスクの分類とセグメンテーションの両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-12-19T15:34:52Z) - GD-MAE: Generative Decoder for MAE Pre-training on LiDAR Point Clouds [72.60362979456035]
Masked Autoencoders (MAE)は、大規模な3Dポイントクラウドでの探索が難しい。
我々は,周囲のコンテキストを自動的にマージするためのtextbfGenerative textbfDecoder for MAE (GD-MAE)を提案する。
提案手法の有効性を, KITTI と ONCE の2つの大規模ベンチマークで実証した。
論文 参考訳(メタデータ) (2022-12-06T14:32:55Z) - One-Shot Synthesis of Images and Segmentation Masks [28.119303696418882]
画像合成とGAN(Generative Adversarial Network)とのセグメンテーションマスクの併用により,画像データをピクセル単位のアノテーションで収集する作業の削減が期待されている。
高忠実な画像マスク合成を学習するために、既存のGANアプローチは、大量の画像データを必要とする事前学習フェーズを必要とする。
我々は,1ショット方式で生成した画像に正確に整合したセグメンテーションマスクの合成を可能にするOSMISモデルを提案する。
論文 参考訳(メタデータ) (2022-09-15T18:00:55Z) - Calibrated Hyperspectral Image Reconstruction via Graph-based
Self-Tuning Network [40.71031760929464]
ハイパースペクトルイメージング(HSI)は、特に符号化スナップショット分光イメージング(CASSI)システムに基づく画像に対して、研究の注目を集めている。
既存の深いHSI再構成モデルは、CASSIの特定の光学ハードウェアマスクが与える2次元圧縮計測に基づいて元の信号を取得するために、ペアデータで訓練される。
このマスク固有のトレーニングスタイルは、ハードウェアの誤校正問題を引き起こし、異なるハードウェアとノイズの多い環境間で深いHSIモデルをデプロイする障壁を設定できる。
マスクの空間構造の変化に適応する不確実性を推論するグラフベース自己調整(GST)ネットワークを提案する。
論文 参考訳(メタデータ) (2021-12-31T09:39:13Z) - Meta Mask Correction for Nuclei Segmentation in Histopathological Image [5.36728433027615]
ノイズマスクを用いたデータを活用するメタラーニングに基づく新しい原子分割法を提案する。
具体的には,ごく少量のクリーンなメタデータを用いてノイズマスクを修正可能な,従来のメタモデルの設計を行う。
提案手法は, 最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-11-24T13:53:35Z) - LevelSet R-CNN: A Deep Variational Method for Instance Segmentation [79.20048372891935]
現在、多くのアートモデルはMask R-CNNフレームワークに基づいている。
本稿では,両世界の長所を結合したR-CNNを提案する。
我々はCOCOおよびCityscapesデータセットに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-07-30T17:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。