Tint Your Models Task-wise for Improved Multi-task Model Merging
- URL: http://arxiv.org/abs/2412.19098v1
- Date: Thu, 26 Dec 2024 07:42:06 GMT
- Title: Tint Your Models Task-wise for Improved Multi-task Model Merging
- Authors: Aecheon Jung, Seunghwan Lee, Dongyoon Han, Sungeun Hong,
- Abstract summary: We propose Model Tinting, a test-time approach that introduces a single task-specific layer for each task as trainable adjustments.<n>Our method jointly trains merging coefficients and task-specific layers, which effectively reduces task conflicts with minimal additional costs.<n>Our method achieves state-of-the-art performance across both computer vision and natural language processing tasks.
- Score: 17.496018757317824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional model merging methods for multi-task learning (MTL) address task conflicts with straightforward strategies such as weight averaging, sign consensus, or minimal test-time adjustments. This presumably counts on the assumption that a merged encoder still retains abundant task knowledge from individual encoders, implying that its shared representation is sufficiently general across tasks. However, our insight is that adding just a single trainable task-specific layer further can bring striking performance gains, as demonstrated by our pilot study. Motivated by this finding, we propose Model Tinting, a new test-time approach that introduces a single task-specific layer for each task as trainable adjustments. Our method jointly trains merging coefficients and task-specific layers, which effectively reduces task conflicts with minimal additional costs. Additionally, we propose a sampling method that utilizes the difference in confidence levels of both merged and individual encoders. Extensive experiments demonstrate our method's effectiveness, which achieves state-of-the-art performance across both computer vision and natural language processing tasks and significantly surpasses prior works. Our code is available at https://github.com/AIM-SKKU/ModelTinting.
Related papers
- No Task Left Behind: Isotropic Model Merging with Common and Task-Specific Subspaces [17.69597528370121]
Model merging integrates the weights of multiple task-specific models into a single multi-task model.
Despite recent interest in the problem, a significant performance gap between the combined and single-task models remains.
We show that alignment between singular components of task-specific and merged matrices strongly correlates with performance improvement.
arXiv Detail & Related papers (2025-02-07T14:22:56Z) - Modeling Multi-Task Model Merging as Adaptive Projective Gradient Descent [74.02034188307857]
Merging multiple expert models offers a promising approach for performing multi-task learning without accessing their original data.
We find existing methods inevitably discard task-specific information that, while causing conflicts, is crucial for performance.
Our approach consistently outperforms previous methods, achieving state-of-the-art results across diverse architectures and tasks in both vision and NLP domains.
arXiv Detail & Related papers (2025-01-02T12:45:21Z) - SuperMerge: An Approach For Gradient-Based Model Merging [9.136320029568305]
Large language models, such as ChatGPT, Claude, or LLaMA, are gigantic, monolithic, and possess the superpower to simultaneously support thousands of tasks.
One challenge of using task-specific models is the incremental need for solving newer tasks after the model is already deployed for existing tasks.
We propose a model merging based approach called SUPERMERGE.
We experimentally demonstrate that SUPERMERGE outperforms existing model merging methods on common natural language processing and computer vision tasks.
arXiv Detail & Related papers (2024-12-09T20:03:14Z) - Optimizing Dense Visual Predictions Through Multi-Task Coherence and Prioritization [7.776434991976473]
Multi-Task Learning (MTL) involves the concurrent training of multiple tasks.<n>We propose an advanced MTL model specifically designed for dense vision tasks.
arXiv Detail & Related papers (2024-12-04T10:05:47Z) - Task Weighting through Gradient Projection for Multitask Learning [5.5967570276373655]
In multitask learning, conflicts between task gradients are a frequent issue degrading a model's training performance.
In this work, we present a method to adapt the Gradient Projection algorithm PCGrad to simultaneously perform task prioritization.
Our approach differs from traditional task weighting performed by scaling task losses in that our weighting scheme applies only in cases where tasks are in conflict, but lets the training proceed unhindered otherwise.
arXiv Detail & Related papers (2024-09-03T11:17:44Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - ZipIt! Merging Models from Different Tasks without Training [20.2479633507354]
"ZipIt!" is a general method for merging two arbitrary models of the same architecture.
We find that these two changes combined account for 20-60% improvement over prior work.
arXiv Detail & Related papers (2023-05-04T17:59:58Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
We propose to direct effort to efficient adaptations of existing models, and propose to augment Language Models with perception.
Existing approaches for adapting pretrained models for vision-language tasks still rely on several key components that hinder their efficiency.
We show that by freezing more than 99% of total parameters, training only one linear projection layer, and prepending only one trainable token, our approach (dubbed eP-ALM) significantly outperforms other baselines on VQA and Captioning.
arXiv Detail & Related papers (2023-03-20T19:20:34Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
In Multi-task learning (MTL), a joint model is trained to simultaneously make predictions for several tasks.
Since the gradients of these different tasks may conflict, training a joint model for MTL often yields lower performance than its corresponding single-task counterparts.
We propose viewing the gradients combination step as a bargaining game, where tasks negotiate to reach an agreement on a joint direction of parameter update.
arXiv Detail & Related papers (2022-02-02T13:21:53Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z) - Conflict-Averse Gradient Descent for Multi-task Learning [56.379937772617]
A major challenge in optimizing a multi-task model is the conflicting gradients.
We introduce Conflict-Averse Gradient descent (CAGrad) which minimizes the average loss function.
CAGrad balances the objectives automatically and still provably converges to a minimum over the average loss.
arXiv Detail & Related papers (2021-10-26T22:03:51Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
Hard parameter sharing in multi-task learning (MTL) allows tasks to share some of model parameters, reducing storage cost and improving prediction accuracy.
The common sharing practice is to share bottom layers of a deep neural network among tasks while using separate top layers for each task.
Using separate bottom-layer parameters could achieve significantly better performance than the common practice.
arXiv Detail & Related papers (2021-07-23T17:26:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.