論文の概要: SketchFill: Sketch-Guided Code Generation for Imputing Derived Missing Values
- arxiv url: http://arxiv.org/abs/2412.19113v1
- Date: Thu, 26 Dec 2024 08:13:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:43.526215
- Title: SketchFill: Sketch-Guided Code Generation for Imputing Derived Missing Values
- Title(参考訳): SketchFill: 派生ミス値に対処するためのSketch-Guidedコード生成
- Authors: Yunfan Zhang, Changlun Li, Yuyu Luo, Nan Tang,
- Abstract要約: 価値計算の欠如は、ドメイン知識に大きく依存するため、長年にわたる問題である。
スケッチフィル(SketchFill)は、LCMをガイドして正確な式を生成し、欠落した数値を暗示する新しいスケッチベースの手法である。
実験の結果,SketchFillは最先端の手法を著しく上回り,CoT法より56.2%,MetaGPTより78.8%高い精度を示した。
- 参考スコア(独自算出の注目度): 11.689230588101147
- License:
- Abstract: Missing value is a critical issue in data science, significantly impacting the reliability of analyses and predictions. Missing value imputation (MVI) is a longstanding problem because it highly relies on domain knowledge. Large language models (LLMs) have emerged as a promising tool for data cleaning, including MVI for tabular data, offering advanced capabilities for understanding and generating content. However, despite their promise, existing LLM techniques such as in-context learning and Chain-of-Thought (CoT) often fall short in guiding LLMs to perform complex reasoning for MVI, particularly when imputing derived missing values, which require mathematical formulas and data relationships across rows and columns. This gap underscores the need for further advancements in LLM methodologies to enhance their reasoning capabilities for more reliable imputation outcomes. To fill this gap, we propose SketchFill, a novel sketch-based method to guide LLMs in generating accurate formulas to impute missing numerical values. Our experimental results demonstrate that SketchFill significantly outperforms state-of-the-art methods, achieving 56.2% higher accuracy than CoT-based methods and 78.8% higher accuracy than MetaGPT. This sets a new standard for automated data cleaning and advances the field of MVI for numerical values.
- Abstract(参考訳): データサイエンスにおける欠落は重要な問題であり、分析と予測の信頼性に大きな影響を及ぼす。
MVI(Missing Value Imputation)は、ドメイン知識に大きく依存するため、長年にわたる問題である。
大規模言語モデル(LLM)は、グラフデータのためのMVIなど、データクリーニングのための有望なツールとして登場し、コンテンツを理解して生成する高度な機能を提供する。
しかし、その約束に反して、文脈内学習やCoT(Chain-of-Thought)のような既存のLLM技術は、特に行や列間の数学的公式やデータ関係を必要とする、MVIの複雑な推論を行うためにLLMを導くのに不足することが多い。
このギャップは、より信頼性の高い計算結果の推論能力を高めるため、LLM方法論のさらなる進歩の必要性を浮き彫りにしている。
このギャップを埋めるためにSketchFillを提案する。SketchFillは、LCMをガイドして正確な式を生成し、欠落した数値を暗示する新しいスケッチベースの手法である。
実験の結果,SketchFillは最先端の手法を著しく上回り,CoT法より56.2%,MetaGPTより78.8%高い精度を示した。
これにより、自動データのクリーニングのための新しい標準が設定され、数値に対するMVIのフィールドが向上する。
関連論文リスト
- Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
大規模言語モデル (LLM) は時系列解析に広く応用されている。
しかし、数発の分類(すなわち重要な訓練シナリオ)におけるそれらの実用性は過小評価されている。
データ不足を克服するために,LLMの学習済み知識を幅広く活用することを目的としている。
論文 参考訳(メタデータ) (2025-01-30T03:59:59Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data [3.08543976986593]
MLLM(Multimodal Large Language Models)は通常、高価な注釈付きマルチモーダルベンチマークを用いて評価される。
本稿では,新しいアノテーションのない評価手法であるGenCeptionの概要と検証を行う。
モダリティ間のセマンティック・コヒーレンスを測定するために一元データのみを必要とし、逆にMLLMの幻覚傾向を評価する。
論文 参考訳(メタデータ) (2024-02-22T21:22:04Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Large Language Models as Data Preprocessors [9.99065004972981]
大規模言語モデル (LLM) は人工知能において大きな進歩を遂げている。
本研究では、データマイニングおよび分析アプリケーションにおいて重要な段階である、データ前処理におけるその可能性について検討する。
我々は,最先端のプロンプトエンジニアリング技術を統合したデータ前処理のためのLLMベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T23:28:43Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。