Mobile Robots through Task-Based Human Instructions using Incremental Curriculum Learning
- URL: http://arxiv.org/abs/2412.19159v1
- Date: Thu, 26 Dec 2024 10:38:40 GMT
- Title: Mobile Robots through Task-Based Human Instructions using Incremental Curriculum Learning
- Authors: Muhammad A. Muttaqien, Ayanori Yorozu, Akihisa Ohya,
- Abstract summary: This paper explores the integration of incremental curriculum learning (ICL) with deep reinforcement learning (DRL)
By adopting a curriculum that mirrors the progressive complexity encountered in human learning, our approach systematically enhances robots' ability to interpret and execute complex instructions over time.
- Score: 1.3518297878940662
- License:
- Abstract: This paper explores the integration of incremental curriculum learning (ICL) with deep reinforcement learning (DRL) techniques to facilitate mobile robot navigation through task-based human instruction. By adopting a curriculum that mirrors the progressive complexity encountered in human learning, our approach systematically enhances robots' ability to interpret and execute complex instructions over time. We explore the principles of DRL and its synergy with ICL, demonstrating how this combination not only improves training efficiency but also equips mobile robots with the generalization capability required for navigating through dynamic indoor environments. Empirical results indicate that robots trained with our ICL-enhanced DRL framework outperform those trained without curriculum learning, highlighting the benefits of structured learning progressions in robotic training.
Related papers
- Force-Based Robotic Imitation Learning: A Two-Phase Approach for Construction Assembly Tasks [2.6092377907704254]
This paper proposes a two-phase system to improve robot learning.
The first phase captures real-time data from operators using a robot arm linked with a virtual simulator via ROS-Sharp.
In the second phase, this feedback is converted into robotic motion instructions, using a generative approach to incorporate force feedback into the learning process.
arXiv Detail & Related papers (2025-01-24T22:01:23Z) - Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance [0.0]
Reinforcement learning, or RL, has emerged as a key robotics technology that enables robots to interact with their environment.
We present a novel method to preserve and reuse information and advice via Deep Interactive Reinforcement Learning.
arXiv Detail & Related papers (2024-05-29T01:46:50Z) - Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion [66.69666636971922]
We present APRL, a policy regularization framework that modulates the robot's exploration over the course of training.
APRL enables a quadrupedal robot to efficiently learn to walk entirely in the real world within minutes.
arXiv Detail & Related papers (2023-10-26T17:51:46Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Don't Start From Scratch: Leveraging Prior Data to Automate Robotic
Reinforcement Learning [70.70104870417784]
Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems.
In practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment.
In this work, we study how these challenges can be tackled by effective utilization of diverse offline datasets collected from previously seen tasks.
arXiv Detail & Related papers (2022-07-11T08:31:22Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
We develop a Physics-Guided Deep Reinforcement Learning with a Hierarchical Reward Mechanism to improve learning efficiency and generalizability for learning-based autonomous grasping.
Our method is validated in robotic grasping tasks with a 3-finger MICO robot arm.
arXiv Detail & Related papers (2022-05-26T18:01:56Z) - Accelerating Robot Learning of Contact-Rich Manipulations: A Curriculum
Learning Study [4.045850174820418]
This paper presents a study for accelerating robot learning of contact-rich manipulation tasks based on Curriculum Learning combined with Domain Randomization (DR)
We tackle complex industrial assembly tasks with position-controlled robots, such as insertion tasks.
Results also show that even when training only in simulation with toy tasks, our method can learn policies that can be transferred to the real-world robot.
arXiv Detail & Related papers (2022-04-27T11:08:39Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - SurRoL: An Open-source Reinforcement Learning Centered and dVRK
Compatible Platform for Surgical Robot Learning [78.76052604441519]
SurRoL is an RL-centered simulation platform for surgical robot learning compatible with the da Vinci Research Kit (dVRK)
Ten learning-based surgical tasks are built in the platform, which are common in the real autonomous surgical execution.
We evaluate SurRoL using RL algorithms in simulation, provide in-depth analysis, deploy the trained policies on the real dVRK, and show that our SurRoL achieves better transferability in the real world.
arXiv Detail & Related papers (2021-08-30T07:43:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.