Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion
- URL: http://arxiv.org/abs/2310.17634v1
- Date: Thu, 26 Oct 2023 17:51:46 GMT
- Title: Grow Your Limits: Continuous Improvement with Real-World RL for Robotic
Locomotion
- Authors: Laura Smith and Yunhao Cao and Sergey Levine
- Abstract summary: We present APRL, a policy regularization framework that modulates the robot's exploration over the course of training.
APRL enables a quadrupedal robot to efficiently learn to walk entirely in the real world within minutes.
- Score: 66.69666636971922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (RL) can enable robots to autonomously acquire
complex behaviors, such as legged locomotion. However, RL in the real world is
complicated by constraints on efficiency, safety, and overall training
stability, which limits its practical applicability. We present APRL, a policy
regularization framework that modulates the robot's exploration over the course
of training, striking a balance between flexible improvement potential and
focused, efficient exploration. APRL enables a quadrupedal robot to efficiently
learn to walk entirely in the real world within minutes and continue to improve
with more training where prior work saturates in performance. We demonstrate
that continued training with APRL results in a policy that is substantially
more capable of navigating challenging situations and is able to adapt to
changes in dynamics with continued training.
Related papers
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks.
Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies.
We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution.
arXiv Detail & Related papers (2024-10-29T08:12:20Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - A Real-World Quadrupedal Locomotion Benchmark for Offline Reinforcement
Learning [27.00483962026472]
We benchmark 11 offline reinforcement learning algorithms in realistic quadrupedal locomotion dataset.
Experiments show that the best-performing ORL algorithms can achieve competitive performance compared with the model-free RL.
Our proposed benchmark will serve as a development platform for testing and evaluating the performance of ORL algorithms in real-world legged locomotion tasks.
arXiv Detail & Related papers (2023-09-13T13:18:29Z) - RL + Model-based Control: Using On-demand Optimal Control to Learn Versatile Legged Locomotion [16.800984476447624]
This paper presents a control framework that combines model-based optimal control and reinforcement learning.
We validate the robustness and controllability of the framework through a series of experiments.
Our framework effortlessly supports the training of control policies for robots with diverse dimensions.
arXiv Detail & Related papers (2023-05-29T01:33:55Z) - Learning and Adapting Agile Locomotion Skills by Transferring Experience [71.8926510772552]
We propose a framework for training complex robotic skills by transferring experience from existing controllers to jumpstart learning new tasks.
We show that our method enables learning complex agile jumping behaviors, navigating to goal locations while walking on hind legs, and adapting to new environments.
arXiv Detail & Related papers (2023-04-19T17:37:54Z) - Robust and Versatile Bipedal Jumping Control through Reinforcement
Learning [141.56016556936865]
This work aims to push the limits of agility for bipedal robots by enabling a torque-controlled bipedal robot to perform robust and versatile dynamic jumps in the real world.
We present a reinforcement learning framework for training a robot to accomplish a large variety of jumping tasks, such as jumping to different locations and directions.
We develop a new policy structure that encodes the robot's long-term input/output (I/O) history while also providing direct access to a short-term I/O history.
arXiv Detail & Related papers (2023-02-19T01:06:09Z) - Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement
Learning [0.8399688944263843]
Deep reinforcement learning (DRL) is a promising approach to solve complex control tasks by learning policies through interactions with the environment.
Sim-to-real approaches leverage simulations to pretrain DRL policies and then deploy them in the real world.
This work proposes a distributed cloud-edge architecture to train DRL agents in the real world in real-time.
arXiv Detail & Related papers (2022-03-04T10:27:01Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.