An End-to-End Depth-Based Pipeline for Selfie Image Rectification
- URL: http://arxiv.org/abs/2412.19189v1
- Date: Thu, 26 Dec 2024 11:57:54 GMT
- Title: An End-to-End Depth-Based Pipeline for Selfie Image Rectification
- Authors: Ahmed Alhawwary, Phong Nguyen-Ha, Janne Mustaniemi, Janne Heikkilä,
- Abstract summary: Portraits or selfie images taken from a close distance typically suffer from perspective distortion.
We propose an end-to-end deep learning-based rectification pipeline to mitigate the effects of perspective distortion.
Our pipeline produces comparable results with a time-consuming 3D GAN-based method while being more than 260 times faster.
- Score: 9.08591353212111
- License:
- Abstract: Portraits or selfie images taken from a close distance typically suffer from perspective distortion. In this paper, we propose an end-to-end deep learning-based rectification pipeline to mitigate the effects of perspective distortion. We learn to predict the facial depth by training a deep CNN. The estimated depth is utilized to adjust the camera-to-subject distance by moving the camera farther, increasing the camera focal length, and reprojecting the 3D image features to the new perspective. The reprojected features are then fed to an inpainting module to fill in the missing pixels. We leverage a differentiable renderer to enable end-to-end training of our depth estimation and feature extraction nets to improve the rectified outputs. To boost the results of the inpainting module, we incorporate an auxiliary module to predict the horizontal movement of the camera which decreases the area that requires hallucination of challenging face parts such as ears. Unlike previous works, we process the full-frame input image at once without cropping the subject's face and processing it separately from the rest of the body, eliminating the need for complex post-processing steps to attach the face back to the subject's body. To train our network, we utilize the popular game engine Unreal Engine to generate a large synthetic face dataset containing various subjects, head poses, expressions, eyewear, clothes, and lighting. Quantitative and qualitative results show that our rectification pipeline outperforms previous methods, and produces comparable results with a time-consuming 3D GAN-based method while being more than 260 times faster.
Related papers
- FisheyeDepth: A Real Scale Self-Supervised Depth Estimation Model for Fisheye Camera [8.502741852406904]
We present FisheyeDepth, a self-supervised depth estimation model tailored for fisheye cameras.
We incorporate a fisheye camera model into the projection and reprojection stages during training to handle image distortions.
We also incorporate real-scale pose information into the geometric projection between consecutive frames, replacing the poses estimated by the conventional pose network.
arXiv Detail & Related papers (2024-09-23T14:31:42Z) - SUPER: Selfie Undistortion and Head Pose Editing with Identity Preservation [37.89326064230339]
Super is a novel method of eliminating distortions and adjusting head pose in a close-up face crop.
We perform 3D GAN inversion for a facial image by optimizing camera parameters and face latent code.
We estimate depth from the obtained latent code, create a depth-induced 3D mesh, and render it with updated camera parameters to obtain a warped portrait.
arXiv Detail & Related papers (2024-06-18T15:14:14Z) - AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth computation and estimation.
This is achieved by reversing, or undo''-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame.
arXiv Detail & Related papers (2023-10-15T05:15:45Z) - Shakes on a Plane: Unsupervised Depth Estimation from Unstabilized
Photography [54.36608424943729]
We show that in a ''long-burst'', forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth.
We devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion.
arXiv Detail & Related papers (2022-12-22T18:54:34Z) - Towards Accurate Reconstruction of 3D Scene Shape from A Single
Monocular Image [91.71077190961688]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then exploits 3D point cloud data to predict the depth shift and the camera's focal length that allow us to recover 3D scene shapes.
We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot evaluation.
arXiv Detail & Related papers (2022-08-28T16:20:14Z) - Graph-Based Depth Denoising & Dequantization for Point Cloud Enhancement [47.61748619439693]
A 3D point cloud is typically constructed from depth measurements acquired by sensors at one or more viewpoints.
Previous works denoise a point cloud textita posteriori after projecting the imperfect depth data onto 3D space.
We enhance depth measurements directly on the sensed images textita priori, before synthesizing a 3D point cloud.
arXiv Detail & Related papers (2021-11-09T04:17:35Z) - Learning to Recover 3D Scene Shape from a Single Image [98.20106822614392]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape.
arXiv Detail & Related papers (2020-12-17T02:35:13Z) - High-Resolution Image Inpainting with Iterative Confidence Feedback and
Guided Upsampling [122.06593036862611]
Existing image inpainting methods often produce artifacts when dealing with large holes in real applications.
We propose an iterative inpainting method with a feedback mechanism.
Experiments show that our method significantly outperforms existing methods in both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2020-05-24T13:23:45Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images.
This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting.
We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we reconstruct a depth map restored by virtue of using the CNN network structure as a prior.
arXiv Detail & Related papers (2020-01-21T21:56:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.