Transformer-Based Wireless Capsule Endoscopy Bleeding Tissue Detection and Classification
- URL: http://arxiv.org/abs/2412.19218v1
- Date: Thu, 26 Dec 2024 13:49:39 GMT
- Title: Transformer-Based Wireless Capsule Endoscopy Bleeding Tissue Detection and Classification
- Authors: Basit Alawode, Shibani Hamza, Adarsh Ghimire, Divya Velayudhan,
- Abstract summary: We design an end-to-end trainable model for the automatic detection and classification of bleeding and non-bleeding frames.
Based on the DETR model, our model uses the Resnet50 for feature extraction, the transformer encoder-decoder for bleeding and non-bleeding region detection, and a feedforward neural network for classification.
Trained in an end-to-end approach on the Auto-WCEBleedGen Version 1 challenge training set, our model performs both detection and classification tasks as a single unit.
- Score: 0.562479170374811
- License:
- Abstract: Informed by the success of the transformer model in various computer vision tasks, we design an end-to-end trainable model for the automatic detection and classification of bleeding and non-bleeding frames extracted from Wireless Capsule Endoscopy (WCE) videos. Based on the DETR model, our model uses the Resnet50 for feature extraction, the transformer encoder-decoder for bleeding and non-bleeding region detection, and a feedforward neural network for classification. Trained in an end-to-end approach on the Auto-WCEBleedGen Version 1 challenge training set, our model performs both detection and classification tasks as a single unit. Our model achieves an accuracy, recall, and F1-score classification percentage score of 98.28, 96.79, and 98.37 respectively, on the Auto-WCEBleedGen version 1 validation set. Further, we record an average precision (AP @ 0.5), mean-average precision (mAP) of 0.7447 and 0.7328 detection results. This earned us a 3rd place position in the challenge. Our code is publicly available via https://github.com/BasitAlawode/WCEBleedGen.
Related papers
- Automated Bleeding Detection and Classification in Wireless Capsule Endoscopy with YOLOv8-X [2.6374023322018916]
This paper presents our solution to the Auto-WCEBleedGen Version V1 Challenge.
We developed a unified YOLOv8-X model for both detection and classification of bleeding regions.
Our approach achieved 96.10% classification accuracy and 76.8% mean Average Precision (mAP) at 0.5 IoU on the val idation dataset.
arXiv Detail & Related papers (2024-12-21T13:37:11Z) - Multi-Class Abnormality Classification Task in Video Capsule Endoscopy [3.656114607436271]
This work addressed the challenge of multiclass anomaly classification in video capsule Endoscopy (VCE)
The purpose is to correctly classify diverse gastrointestinal disorders, which is critical for increasing diagnostic efficiency in clinical settings.
Our team capsule commandos achieved 7th place ranking with a test set[7] performance of Mean AUC: 0.7314 and balanced accuracy: 0.3235.
arXiv Detail & Related papers (2024-10-25T21:22:52Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Classification of Endoscopy and Video Capsule Images using CNN-Transformer Model [1.0994755279455526]
This study proposes a hybrid model that combines the advantages of Transformers and Convolutional Neural Networks (CNNs) to enhance classification performance.
For the GastroVision dataset, our proposed model demonstrates excellent performance with Precision, Recall, F1 score, Accuracy, and Matthews Correlation Coefficient (MCC) of 0.8320, 0.8386, 0.8324, 0.8386, and 0.8191, respectively.
arXiv Detail & Related papers (2024-08-20T11:05:32Z) - A Robust Pipeline for Classification and Detection of Bleeding Frames in Wireless Capsule Endoscopy using Swin Transformer and RT-DETR [1.7499351967216343]
Solution combines the Swin Transformer for the initial classification of bleeding frames and RT-DETR for further detection of bleeding.
On the validation set, this approach achieves a classification accuracy of 98.5% compared to 91.7% without any pre-processing.
On the test set, this approach achieves a classification accuracy and F1 score of 87.0% and 89.0% respectively.
arXiv Detail & Related papers (2024-06-12T09:58:42Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
Inherent to today's operating environment is the practice of adversarial machine learning.
In this work, we examine the feasibility of unsupervised learning and graph-based methods for anomaly detection.
We incorporate a realistic adversarial training mechanism when training our supervised models to enable strong classification performance in adversarial environments.
arXiv Detail & Related papers (2021-05-14T10:05:10Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z) - Detection of Obstructive Sleep Apnoea Using Features Extracted from
Segmented Time-Series ECG Signals Using a One Dimensional Convolutional
Neural Network [0.19686770963118383]
The study presents a one-dimensional convolutional neural network (1DCNN) model, designed for the automated detection of obstructive Sleep Apnoea (OSA) captured from single-channel electrocardiogram (ECG) signals.
The model is constructed using convolutional, max pooling layers and a fully connected Multilayer Perceptron (MLP) consisting of a hidden layer and SoftMax output for classification.
This demonstrates the model can identify the presence of Apnoea with a high degree of accuracy.
arXiv Detail & Related papers (2020-02-03T15:47:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.