論文の概要: Multi-view Fake News Detection Model Based on Dynamic Hypergraph
- arxiv url: http://arxiv.org/abs/2412.19227v1
- Date: Thu, 26 Dec 2024 14:05:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:25:27.545273
- Title: Multi-view Fake News Detection Model Based on Dynamic Hypergraph
- Title(参考訳): 動的ハイパーグラフに基づくマルチビューフェイクニュース検出モデル
- Authors: Rongping Ye, Xiaobing Pei,
- Abstract要約: 動的ハイパーグラフに基づくマルチビューフェイクニュース検出モデル(DHy-MFND)を提案する。
複数のニュース作品間の複雑な高次関係をモデル化するためにハイパーグラフ構造を用いる。
また、異なる視点にまたがる真正性関連埋め込みを捉えるために、対照的な学習を導入する。
- 参考スコア(独自算出の注目度): 1.1970409518725493
- License:
- Abstract: With the rapid development of online social networks and the inadequacies in content moderation mechanisms, the detection of fake news has emerged as a pressing concern for the public. Various methods have been proposed for fake news detection, including text-based approaches as well as a series of graph-based approaches. However, the deceptive nature of fake news renders text-based approaches less effective. Propagation tree-based methods focus on the propagation process of individual news, capturing pairwise relationships but lacking the capability to capture high-order complex relationships. Large heterogeneous graph-based approaches necessitate the incorporation of substantial additional information beyond news text and user data, while hypergraph-based approaches rely on predefined hypergraph structures. To tackle these issues, we propose a novel dynamic hypergraph-based multi-view fake news detection model (DHy-MFND) that learns news embeddings across three distinct views: text-level, propagation tree-level, and hypergraph-level. By employing hypergraph structures to model complex high-order relationships among multiple news pieces and introducing dynamic hypergraph structure learning, we optimize predefined hypergraph structures while learning news embeddings. Additionally, we introduce contrastive learning to capture authenticity-relevant embeddings across different views. Extensive experiments on two benchmark datasets demonstrate the effectiveness of our proposed DHy-MFND compared with a broad range of competing baselines.
- Abstract(参考訳): オンラインソーシャルネットワークの急速な発展とコンテンツモデレーションメカニズムの欠如により、フェイクニュースの発見が大衆の関心を喚起している。
テキストベースのアプローチやグラフベースのアプローチなど,偽ニュース検出のためのさまざまな手法が提案されている。
しかし、偽ニュースの虚偽性は、テキストベースのアプローチの効率を低下させる。
伝播木に基づく手法は、個々のニュースの伝播過程に焦点をあて、ペア関係を捉えるが、高次複雑な関係を捉える能力に欠ける。
大規模なヘテロジニアスグラフベースのアプローチでは、ニューステキストやユーザデータ以外の重要な情報を組み込む必要があるが、ハイパーグラフベースのアプローチは事前に定義されたハイパーグラフ構造に依存している。
これらの課題に対処するために、テキストレベル、伝搬木レベル、ハイパーグラフレベルという3つの異なる視点にまたがるニュース埋め込みを学習する動的ハイパーグラフベースのマルチビューフェイクニュース検出モデル(DHy-MFND)を提案する。
複数のニュース作品間の複雑な高次関係をモデル化するためにハイパーグラフ構造を用い、動的ハイパーグラフ構造学習を導入することにより、ニュース埋め込みを学習しながら、事前に定義されたハイパーグラフ構造を最適化する。
さらに、異なる視点にまたがる真正性関連埋め込みを捉えるために、対照的な学習を導入する。
提案したDHy-MFNDの有効性を、幅広い競合するベースラインと比較した2つのベンチマークデータセットの大規模な実験により実証した。
関連論文リスト
- MSynFD: Multi-hop Syntax aware Fake News Detection [27.046529059563863]
ソーシャルメディアプラットフォームは、偽ニュースを急速に拡散させ、われわれの現実社会に脅威を与えている。
既存の方法は、フェイクニュースの検出を強化するために、マルチモーダルデータまたはコンテキスト情報を使用する。
本稿では,偽ニュースの微妙なひねりに対処するための補完構文情報を含む,新しいマルチホップ構文認識型偽ニュース検出手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T05:40:33Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
我々は新しいハイパーグラフ学習フレームワークHyperGraph Transformer(HyperGT)を提案する。
HyperGTはTransformerベースのニューラルネットワークアーキテクチャを使用して、すべてのノードとハイパーエッジのグローバル相関を効果的に検討する。
局所接続パターンを保ちながら、グローバルな相互作用を効果的に組み込むことで、包括的なハイパーグラフ表現学習を実現する。
論文 参考訳(メタデータ) (2023-12-18T17:50:52Z) - Hypergraph-MLP: Learning on Hypergraphs without Message Passing [41.43504601820411]
多くのハイパーグラフニューラルネットワークは、ハイパーグラフ構造上のメッセージパッシングを利用してノード表現学習を強化する。
我々は、ハイパーグラフ構造に関する情報を、明示的なメッセージパッシングを伴わずに、トレーニングの監督に組み込む方法を提案する。
具体的には,ハイパーグラフ構造化データのための新しい学習フレームワークであるHypergraph-MLPを紹介する。
論文 参考訳(メタデータ) (2023-12-15T13:30:04Z) - Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs [22.64740740462169]
本稿では,動的ハイパーエッジ構築と注意深い埋め込み更新が可能なLFHというハイパーグラフ学習フレームワークを提案する。
提案手法の有効性を評価するため,いくつかの一般的なデータセットを対象とした総合的な実験を行った。
論文 参考訳(メタデータ) (2023-07-07T06:26:44Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness [3.698434507617248]
グラフに基づく半教師付きノード分類は、研究価値と重要性の高い多くのアプリケーションにおいて最先端のアプローチであることが示されている。
本稿では、ハイパーグラフ構造学習とハイパーグラフ表現学習を同時に統合した新しいデュアル接続モデルであるデュアルハイパーグラフニューラルネットワーク(DualHGNN)を提案する。
論文 参考訳(メタデータ) (2023-06-07T07:40:04Z) - Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation [75.65483522949857]
複雑な履歴データの下でユーザの興味を捉えるために, マルチグラデーション・ハイパーグラフ・インフォメーション・モデリング手法を提案する。
提案手法では,まず,ユーザの過去の対話セッションをモデル化し,セッションベースハイパーグラフを作成するためにハイパーグラフ構造を用いる。
さらに,2種類のハイパーグラフに対して多粒度ハイパーグラフの畳み込みを行い,拡張表現を用いて関心を意識したCRSを開発する。
論文 参考訳(メタデータ) (2023-05-04T13:13:44Z) - No Place to Hide: Dual Deep Interaction Channel Network for Fake News
Detection based on Data Augmentation [16.40196904371682]
本稿では,意味,感情,データ強化の観点から,偽ニュース検出のための新しいフレームワークを提案する。
セマンティックと感情の2つのディープインタラクションチャネルネットワークは、より包括的できめ細かなニュース表現を得るために設計されている。
実験の結果,提案手法は最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-31T13:33:53Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
本稿では,EDVWおよびEIVWハイパーグラフを処理可能な一般学習フレームワークであるGeneral Hypergraph Spectral Convolution(GHSC)を提案する。
本稿では,提案するフレームワークが最先端の性能を達成できることを示す。
ソーシャルネットワーク分析,視覚的客観的分類,タンパク質学習など,様々な分野の実験により,提案手法が最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2022-03-31T10:46:47Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。