Virtual Nodes Can Help: Tackling Distribution Shifts in Federated Graph Learning
- URL: http://arxiv.org/abs/2412.19229v1
- Date: Thu, 26 Dec 2024 14:16:15 GMT
- Title: Virtual Nodes Can Help: Tackling Distribution Shifts in Federated Graph Learning
- Authors: Xingbo Fu, Zihan Chen, Yinhan He, Song Wang, Binchi Zhang, Chen Chen, Jundong Li,
- Abstract summary: Federated Graph Learning (FGL) enables multiple clients to jointly train powerful graph learning models.
In the real world, graph data can suffer from significant distribution shifts across clients.
We propose a novel FGL framework entitled FedVN that eliminates distribution shifts through client-specific graph augmentation strategies.
- Score: 43.931066381519834
- License:
- Abstract: Federated Graph Learning (FGL) enables multiple clients to jointly train powerful graph learning models, e.g., Graph Neural Networks (GNNs), without sharing their local graph data for graph-related downstream tasks, such as graph property prediction. In the real world, however, the graph data can suffer from significant distribution shifts across clients as the clients may collect their graph data for different purposes. In particular, graph properties are usually associated with invariant label-relevant substructures (i.e., subgraphs) across clients, while label-irrelevant substructures can appear in a client-specific manner. The issue of distribution shifts of graph data hinders the efficiency of GNN training and leads to serious performance degradation in FGL. To tackle the aforementioned issue, we propose a novel FGL framework entitled FedVN that eliminates distribution shifts through client-specific graph augmentation strategies with multiple learnable Virtual Nodes (VNs). Specifically, FedVN lets the clients jointly learn a set of shared VNs while training a global GNN model. To eliminate distribution shifts, each client trains a personalized edge generator that determines how the VNs connect local graphs in a client-specific manner. Furthermore, we provide theoretical analyses indicating that FedVN can eliminate distribution shifts of graph data across clients. Comprehensive experiments on four datasets under five settings demonstrate the superiority of our proposed FedVN over nine baselines.
Related papers
- Federated Graph Learning with Graphless Clients [52.5629887481768]
Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs)
We propose a novel framework FedGLS to tackle the problem in FGL with graphless clients.
arXiv Detail & Related papers (2024-11-13T06:54:05Z) - One Node Per User: Node-Level Federated Learning for Graph Neural Networks [7.428431479479646]
We propose a novel framework for node-level federated graph learning.
We introduce a graph Laplacian term based on the feature vector's latent representation to regulate the user-side model updates.
arXiv Detail & Related papers (2024-09-29T02:16:07Z) - Federated Graph Learning with Structure Proxy Alignment [43.13100155569234]
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners.
We propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space.
Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification.
arXiv Detail & Related papers (2024-08-18T07:32:54Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
Graph neural networks (GNNs) have found extensive applications in learning from graph data.
To bolster the generalization capacity of GNNs, it has become customary to augment training graph structures with techniques like graph augmentations.
This study introduces the concept of Mixture-of-Experts (MoE) to GNNs, with the aim of augmenting their capacity to adapt to a diverse range of training graph structures.
arXiv Detail & Related papers (2023-04-06T01:09:36Z) - FedEgo: Privacy-preserving Personalized Federated Graph Learning with
Ego-graphs [22.649780281947837]
In some practical scenarios, graph data are stored separately in multiple distributed parties, which may not be directly shared due to conflicts of interest.
We propose FedEgo, a federated graph learning framework based on ego-graphs to tackle the challenges above.
arXiv Detail & Related papers (2022-08-29T15:47:36Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - OOD-GNN: Out-of-Distribution Generalized Graph Neural Network [73.67049248445277]
Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from identical distribution.
Existing GNNs lack out-of-distribution generalization abilities so that their performance substantially degrades when there exist distribution shifts between testing and training graph data.
We propose an out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs.
arXiv Detail & Related papers (2021-12-07T16:29:10Z) - FedGL: Federated Graph Learning Framework with Global Self-Supervision [22.124339267195822]
FedGL is capable of obtaining a high-quality global graph model while protecting data privacy.
The global self-supervision enables the information of each client to flow and share in a privacy-preserving manner.
arXiv Detail & Related papers (2021-05-07T11:27:23Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.