Federated Graph Learning with Structure Proxy Alignment
- URL: http://arxiv.org/abs/2408.09393v1
- Date: Sun, 18 Aug 2024 07:32:54 GMT
- Title: Federated Graph Learning with Structure Proxy Alignment
- Authors: Xingbo Fu, Zihan Chen, Binchi Zhang, Chen Chen, Jundong Li,
- Abstract summary: Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners.
We propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space.
Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification.
- Score: 43.13100155569234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners, which has been applied in various applications such as social recommendation and financial fraud detection. Inherited from generic Federated Learning (FL), FGL similarly has the data heterogeneity issue where the label distribution may vary significantly for distributed graph data across clients. For instance, a client can have the majority of nodes from a class, while another client may have only a few nodes from the same class. This issue results in divergent local objectives and impairs FGL convergence for node-level tasks, especially for node classification. Moreover, FGL also encounters a unique challenge for the node classification task: the nodes from a minority class in a client are more likely to have biased neighboring information, which prevents FGL from learning expressive node embeddings with Graph Neural Networks (GNNs). To grapple with the challenge, we propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space and aligns them to obtain global structure proxies in the server. Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification. To achieve this, FedSpray trains a global feature-structure encoder and generates unbiased soft targets with structure proxies to regularize local training of GNN models in a personalized way. We conduct extensive experiments over four datasets, and experiment results validate the superiority of FedSpray compared with other baselines. Our code is available at https://github.com/xbfu/FedSpray.
Related papers
- FedGT: Federated Node Classification with Scalable Graph Transformer [27.50698154862779]
We propose a scalable textbfFederated textbfGraph textbfTransformer (textbfFedGT) in the paper.
FedGT computes clients' similarity based on the aligned global nodes with optimal transport.
arXiv Detail & Related papers (2024-01-26T21:02:36Z) - AdaFGL: A New Paradigm for Federated Node Classification with Topology
Heterogeneity [44.11777886421429]
Federated Graph Learning (FGL) has attracted significant attention as a distributed framework based on graph neural networks.
We introduce the concept of structure Non-iid split and then present a new paradigm called underlineAdaptive underlineFederated underlineGraph underlineLearning (AdaFGL)
Our proposed AdaFGL outperforms baselines by significant margins of 3.24% and 5.57% on community split and structure Non-iid split, respectively.
arXiv Detail & Related papers (2024-01-22T08:23:31Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - FedHGN: A Federated Framework for Heterogeneous Graph Neural Networks [45.94642721490744]
Heterogeneous graph neural networks (HGNNs) can learn from typed and relational graph data more effectively than conventional GNNs.
With larger parameter spaces, HGNNs may require more training data, which is often scarce in real-world applications due to privacy regulations.
We propose FedHGN, a novel and general FGL framework for HGNNs.
arXiv Detail & Related papers (2023-05-16T18:01:49Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
Graph neural networks (GNNs) have found extensive applications in learning from graph data.
To bolster the generalization capacity of GNNs, it has become customary to augment training graph structures with techniques like graph augmentations.
This study introduces the concept of Mixture-of-Experts (MoE) to GNNs, with the aim of augmenting their capacity to adapt to a diverse range of training graph structures.
arXiv Detail & Related papers (2023-04-06T01:09:36Z) - Federated Learning on Non-IID Graphs via Structural Knowledge Sharing [47.140441784462794]
federated graph learning (FGL) enables clients to train strong GNN models in a distributed manner without sharing their private data.
We propose FedStar, an FGL framework that extracts and shares the common underlying structure information for inter-graph learning tasks.
We perform extensive experiments over both cross-dataset and cross-domain non-IID FGL settings, demonstrating FedStar's superiority.
arXiv Detail & Related papers (2022-11-23T15:12:16Z) - Personalized Subgraph Federated Learning [56.52903162729729]
We introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs.
We propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it.
We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs.
arXiv Detail & Related papers (2022-06-21T09:02:53Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - FedGL: Federated Graph Learning Framework with Global Self-Supervision [22.124339267195822]
FedGL is capable of obtaining a high-quality global graph model while protecting data privacy.
The global self-supervision enables the information of each client to flow and share in a privacy-preserving manner.
arXiv Detail & Related papers (2021-05-07T11:27:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.