Federated Graph Learning with Graphless Clients
- URL: http://arxiv.org/abs/2411.08374v1
- Date: Wed, 13 Nov 2024 06:54:05 GMT
- Title: Federated Graph Learning with Graphless Clients
- Authors: Xingbo Fu, Song Wang, Yushun Dong, Binchi Zhang, Chen Chen, Jundong Li,
- Abstract summary: Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs)
We propose a novel framework FedGLS to tackle the problem in FGL with graphless clients.
- Score: 52.5629887481768
- License:
- Abstract: Federated Graph Learning (FGL) is tasked with training machine learning models, such as Graph Neural Networks (GNNs), for multiple clients, each with its own graph data. Existing methods usually assume that each client has both node features and graph structure of its graph data. In real-world scenarios, however, there exist federated systems where only a part of the clients have such data while other clients (i.e. graphless clients) may only have node features. This naturally leads to a novel problem in FGL: how to jointly train a model over distributed graph data with graphless clients? In this paper, we propose a novel framework FedGLS to tackle the problem in FGL with graphless clients. In FedGLS, we devise a local graph learner on each graphless client which learns the local graph structure with the structure knowledge transferred from other clients. To enable structure knowledge transfer, we design a GNN model and a feature encoder on each client. During local training, the feature encoder retains the local graph structure knowledge together with the GNN model via knowledge distillation, and the structure knowledge is transferred among clients in global update. Our extensive experiments demonstrate the superiority of the proposed FedGLS over five baselines.
Related papers
- One Node Per User: Node-Level Federated Learning for Graph Neural Networks [7.428431479479646]
We propose a novel framework for node-level federated graph learning.
We introduce a graph Laplacian term based on the feature vector's latent representation to regulate the user-side model updates.
arXiv Detail & Related papers (2024-09-29T02:16:07Z) - Federated Graph Learning with Structure Proxy Alignment [43.13100155569234]
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners.
We propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space.
Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification.
arXiv Detail & Related papers (2024-08-18T07:32:54Z) - OpenGraph: Towards Open Graph Foundation Models [20.401374302429627]
Graph Neural Networks (GNNs) have emerged as promising techniques for encoding structural information.
Key challenge remains: the difficulty of generalizing to unseen graph data with different properties.
We propose a novel graph foundation model, called OpenGraph, to address this challenge.
arXiv Detail & Related papers (2024-03-02T08:05:03Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.
Existing GSL methods heavily depend on explicit graph structural information as supervision signals.
We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
Graph neural networks (GNNs) have found extensive applications in learning from graph data.
To bolster the generalization capacity of GNNs, it has become customary to augment training graph structures with techniques like graph augmentations.
This study introduces the concept of Mixture-of-Experts (MoE) to GNNs, with the aim of augmenting their capacity to adapt to a diverse range of training graph structures.
arXiv Detail & Related papers (2023-04-06T01:09:36Z) - Federated Learning on Non-IID Graphs via Structural Knowledge Sharing [47.140441784462794]
federated graph learning (FGL) enables clients to train strong GNN models in a distributed manner without sharing their private data.
We propose FedStar, an FGL framework that extracts and shares the common underlying structure information for inter-graph learning tasks.
We perform extensive experiments over both cross-dataset and cross-domain non-IID FGL settings, demonstrating FedStar's superiority.
arXiv Detail & Related papers (2022-11-23T15:12:16Z) - Privatized Graph Federated Learning [57.14673504239551]
We introduce graph federated learning, which consists of multiple units connected by a graph.
We show how graph homomorphic perturbations can be used to ensure the algorithm is differentially private.
arXiv Detail & Related papers (2022-03-14T13:48:23Z) - FedGL: Federated Graph Learning Framework with Global Self-Supervision [22.124339267195822]
FedGL is capable of obtaining a high-quality global graph model while protecting data privacy.
The global self-supervision enables the information of each client to flow and share in a privacy-preserving manner.
arXiv Detail & Related papers (2021-05-07T11:27:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.