MEDEC: A Benchmark for Medical Error Detection and Correction in Clinical Notes
- URL: http://arxiv.org/abs/2412.19260v2
- Date: Thu, 02 Jan 2025 18:46:05 GMT
- Title: MEDEC: A Benchmark for Medical Error Detection and Correction in Clinical Notes
- Authors: Asma Ben Abacha, Wen-wai Yim, Yujuan Fu, Zhaoyi Sun, Meliha Yetisgen, Fei Xia, Thomas Lin,
- Abstract summary: We introduce MEDEC, the first publicly available benchmark for medical error detection and correction in clinical notes.
MEDEC consists of 3,848 clinical texts, including 488 clinical notes from three US hospital systems.
We evaluate recent LLMs for the tasks of detecting and correcting medical errors requiring both medical knowledge and reasoning capabilities.
- Score: 22.401540975926324
- License:
- Abstract: Several studies showed that Large Language Models (LLMs) can answer medical questions correctly, even outperforming the average human score in some medical exams. However, to our knowledge, no study has been conducted to assess the ability of language models to validate existing or generated medical text for correctness and consistency. In this paper, we introduce MEDEC (https://github.com/abachaa/MEDEC), the first publicly available benchmark for medical error detection and correction in clinical notes, covering five types of errors (Diagnosis, Management, Treatment, Pharmacotherapy, and Causal Organism). MEDEC consists of 3,848 clinical texts, including 488 clinical notes from three US hospital systems that were not previously seen by any LLM. The dataset has been used for the MEDIQA-CORR shared task to evaluate seventeen participating systems [Ben Abacha et al., 2024]. In this paper, we describe the data creation methods and we evaluate recent LLMs (e.g., o1-preview, GPT-4, Claude 3.5 Sonnet, and Gemini 2.0 Flash) for the tasks of detecting and correcting medical errors requiring both medical knowledge and reasoning capabilities. We also conducted a comparative study where two medical doctors performed the same task on the MEDEC test set. The results showed that MEDEC is a sufficiently challenging benchmark to assess the ability of models to validate existing or generated notes and to correct medical errors. We also found that although recent LLMs have a good performance in error detection and correction, they are still outperformed by medical doctors in these tasks. We discuss the potential factors behind this gap, the insights from our experiments, the limitations of current evaluation metrics, and share potential pointers for future research.
Related papers
- Fact or Guesswork? Evaluating Large Language Model's Medical Knowledge with Structured One-Hop Judgment [108.55277188617035]
Large language models (LLMs) have been widely adopted in various downstream task domains, but their ability to directly recall and apply factual medical knowledge remains under-explored.
Most existing medical QA benchmarks assess complex reasoning or multi-hop inference, making it difficult to isolate LLMs' inherent medical knowledge from their reasoning capabilities.
We introduce the Medical Knowledge Judgment, a dataset specifically designed to measure LLMs' one-hop factual medical knowledge.
arXiv Detail & Related papers (2025-02-20T05:27:51Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research [45.2233252981348]
Large Language Models have shown promising results in their ability to encode general medical knowledge.
We test the ability of state-of-the-art LLMs to leverage their internal knowledge and reasoning for epilepsy diagnosis.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - Performance of large language models in numerical vs. semantic medical knowledge: Benchmarking on evidence-based Q&As [1.0034156461900003]
Large language models (LLMs) show promising results in many aspects of language-based clinical practice.
We used a comprehensive medical knowledge graph (encompassed data from more than 50,00 peer-reviewed articles) and created the "EBMQA"
We benchmarked this dataset using more than 24,500 questions on two state-of-the-art LLMs: Chat-GPT4 and Claude3-Opus.
We found that both LLMs excelled more in semantic than numerical QAs, with Claude3 surpassing GPT4 in numerical QAs.
arXiv Detail & Related papers (2024-06-06T08:41:46Z) - WangLab at MEDIQA-CORR 2024: Optimized LLM-based Programs for Medical Error Detection and Correction [5.7931394318054155]
We present our approach that achieved top performance in all three subtasks.
For the MS dataset, which contains subtle errors, we developed a retrieval-based system.
For the UW dataset, reflecting more realistic clinical notes, we created a pipeline of modules to detect, localize, and correct errors.
arXiv Detail & Related papers (2024-04-22T19:31:45Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
We reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models.
We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation.
We present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models.
arXiv Detail & Related papers (2023-04-21T11:54:44Z) - Capabilities of GPT-4 on Medical Challenge Problems [23.399857819743158]
GPT-4 is a general-purpose model that is not specialized for medical problems through training or to solve clinical tasks.
We present a comprehensive evaluation of GPT-4 on medical competency examinations and benchmark datasets.
arXiv Detail & Related papers (2023-03-20T16:18:38Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.