論文の概要: PearSAN: A Machine Learning Method for Inverse Design using Pearson Correlated Surrogate Annealing
- arxiv url: http://arxiv.org/abs/2412.19284v1
- Date: Thu, 26 Dec 2024 17:02:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:28:35.579405
- Title: PearSAN: A Machine Learning Method for Inverse Design using Pearson Correlated Surrogate Annealing
- Title(参考訳): PearSAN: ピアソン関連サロゲートアニーリングを用いた逆設計のための機械学習手法
- Authors: Michael Bezick, Blake A. Wilson, Vaishnavi Iyer, Yuheng Chen, Vladimir M. Shalaev, Sabre Kais, Alexander V. Kildishev, Alexandra Boltasseva, Brad Lackey,
- Abstract要約: PearSANは、大きな設計空間を持つ逆設計問題に適用可能な機械学習支援最適化アルゴリズムである。
ピアソン相関代理モデルを用いて、真の設計計量のメリットの図形を予測する。
最先端の最大設計効率は97%で、少なくとも以前の方法よりも桁違いに高速である。
- 参考スコア(独自算出の注目度): 66.27103948750306
- License:
- Abstract: PearSAN is a machine learning-assisted optimization algorithm applicable to inverse design problems with large design spaces, where traditional optimizers struggle. The algorithm leverages the latent space of a generative model for rapid sampling and employs a Pearson correlated surrogate model to predict the figure of merit of the true design metric. As a showcase example, PearSAN is applied to thermophotovoltaic (TPV) metasurface design by matching the working bands between a thermal radiator and a photovoltaic cell. PearSAN can work with any pretrained generative model with a discretized latent space, making it easy to integrate with VQ-VAEs and binary autoencoders. Its novel Pearson correlational loss can be used as both a latent regularization method, similar to batch and layer normalization, and as a surrogate training loss. We compare both to previous energy matching losses, which are shown to enforce poor regularization and performance, even with upgraded affine parameters. PearSAN achieves a state-of-the-art maximum design efficiency of 97%, and is at least an order of magnitude faster than previous methods, with an improved maximum figure-of-merit gain.
- Abstract(参考訳): PearSANは、機械学習支援最適化アルゴリズムで、従来の最適化アルゴリズムが苦労する大きな設計空間の逆設計問題に適用できる。
このアルゴリズムは、生成モデルの潜時空間を高速サンプリングに利用し、ピアソン相関代理モデルを用いて真の設計距離の値を予測する。
例示として、PearSANは熱放射器と太陽電池の動作帯を整合させることにより、熱光起電力(TPV)の地表面設計に適用される。
PearSANは、離散化された潜在空間を持つ任意の事前学習された生成モデルで動作するため、VQ-VAEやバイナリオートエンコーダとの統合が容易である。
その新しいピアソン相関損失は、バッチや層正規化と同様の潜在正則化法と、代理的トレーニング損失の両方に利用できる。
改良されたアフィンパラメータであっても, 前回のエネルギー整合損失と比較して, 正則化と性能の低下が示されている。
PearSAN は最先端の最大設計効率 97% を達成し、従来の手法よりも少なくとも桁違いに高速で、最大積率も改善されている。
関連論文リスト
- Memory-Efficient Optimization with Factorized Hamiltonian Descent [11.01832755213396]
本稿では,この課題に対処するためのメモリ効率因子化手法を取り入れた新しい適応型H-Facを提案する。
運動量とスケーリングパラメータ推定器の両方にランク1パラメータ化を適用することで、H-Facはメモリコストをサブ線形レベルに削減する。
我々はハミルトン力学から導かれる原理に基づいてアルゴリズムを開発し、最適化力学と収束保証において堅牢な理論的基盤を提供する。
論文 参考訳(メタデータ) (2024-06-14T12:05:17Z) - Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
学習に基づくアプローチは、圧縮率と再構成された画質の妥協を最小化する。
成功したテクニックは、2レベルネストされた潜伏変数モデル内で機能するディープハイパープライアの導入である。
本稿では,マルコフ連鎖構造を持つ一般化Lレベルネスト生成モデルを設計することによって,この概念を拡張した。
論文 参考訳(メタデータ) (2024-06-10T11:00:26Z) - Combining Thermodynamics-based Model of the Centrifugal Compressors and
Active Machine Learning for Enhanced Industrial Design Optimization [1.393251976777607]
本稿では,熱力学に基づく圧縮機モデルとガウス過程に基づくサロゲートモデルを組み合わせたActive-CompDesignフレームワークを提案する。
サンプルの不確実性に基づく問合せ機能を活用することにより,サロゲートモデルの性能が大幅に向上することを示す。
本研究では, 内部熱力学に基づくシミュレータよりも圧縮機設計最適化の計算時間を約46%に短縮した。
論文 参考訳(メタデータ) (2023-09-06T08:06:15Z) - Complexity Matters: Rethinking the Latent Space for Generative Modeling [65.64763873078114]
生成的モデリングにおいて、多くの成功したアプローチは、例えば安定拡散のような低次元の潜在空間を利用する。
本研究では, モデル複雑性の観点から潜在空間を再考することにより, 未探索の話題に光を当てることを目的としている。
論文 参考訳(メタデータ) (2023-07-17T07:12:29Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive
Companding for Efficient Learned Image Compression [24.812267280543693]
本稿では,空間適応型コンパウンディング(LVQAC)マッピングを併用した新しい格子ベクトル量子化方式を提案する。
エンドツーエンドのCNN画像圧縮モデルでは、一様量子化器をLVQACで置き換えることにより、モデルの複雑さを大幅に増大させることなく、より優れたレート歪み性能が得られる。
論文 参考訳(メタデータ) (2023-03-25T23:34:15Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
本研究では,連続空間の逆設計問題を,制約のないバイナリ最適化問題にマッピングする,汎用的な機械学習ベースのフレームワークを開発する。
本研究では, 熱発光トポロジを熱光応用に最適化し, (ii) 高効率ビームステアリングのための拡散メタグレーティングを行うことにより, 2つの逆設計問題に対するフレームワークの性能を示す。
論文 参考訳(メタデータ) (2021-05-06T02:22:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。