論文の概要: Enhancing Drug-Target Interaction Prediction through Transfer Learning from Activity Cliff Prediction Tasks
- arxiv url: http://arxiv.org/abs/2412.19815v1
- Date: Wed, 11 Dec 2024 18:56:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 10:01:38.431693
- Title: Enhancing Drug-Target Interaction Prediction through Transfer Learning from Activity Cliff Prediction Tasks
- Title(参考訳): アクティビティ・クリフ予測タスクからの伝達学習による薬物・標的相互作用予測の強化
- Authors: Regina Ibragimova, Dimitrios Iliadis, Willem Waegeman,
- Abstract要約: 本研究では,交流予測から伝達学習を適用してDTI予測を向上する手法を提案する。
ACとDTIの予測を別の問題として扱う以前の研究とは異なり、この研究は、薬物発見におけるデータの不足と予測の課題に対処するための統一的な枠組みを確立している。
- 参考スコア(独自算出の注目度): 1.6112718683989882
- License:
- Abstract: Recently, machine learning (ML) has gained popularity in the early stages of drug discovery. This trend is unsurprising given the increasing volume of relevant experimental data and the continuous improvement of ML algorithms. However, conventional models, which rely on the principle of molecular similarity, often fail to capture the complexities of chemical interactions, particularly those involving activity cliffs (ACs) - compounds that are structurally similar but exhibit evidently different activity behaviors. In this work, we address two distinct yet related tasks: (1) activity cliff (AC) prediction and (2) drug-target interaction (DTI) prediction. Leveraging insights gained from the AC prediction task, we aim to improve the performance of DTI prediction through transfer learning. A universal model was developed for AC prediction, capable of identifying activity cliffs across diverse targets. Insights from this model were then incorporated into DTI prediction, enabling better handling of challenging cases involving ACs while maintaining similar overall performance. This approach establishes a strong foundation for integrating AC awareness into predictive models for drug discovery. Scientific Contribution This study presents a novel approach that applies transfer learning from AC prediction to enhance DTI prediction, addressing limitations of traditional similarity-based models. By introducing AC-awareness, we improve DTI model performance in structurally complex regions, demonstrating the benefits of integrating compound-specific and protein-contextual information. Unlike previous studies, which treat AC and DTI predictions as separate problems, this work establishes a unified framework to address both data scarcity and prediction challenges in drug discovery.
- Abstract(参考訳): 近年,薬物発見の初期段階において機械学習(ML)が普及している。
この傾向は、関連する実験データの量の増加とMLアルゴリズムの継続的な改善を考えると、予想外である。
しかし、分子類似性の原理に依存する従来のモデルは、化学相互作用の複雑さ、特に、構造的に類似しているが明らかに異なる活性挙動を示す活性崖(AC)を含む化合物を捉えるのに失敗することが多い。
本研究では,(1)活動限界(AC)予測と(2)薬物と薬物の相互作用(DTI)予測の2つの異なる関連課題に対処する。
本稿では,交流予測タスクから得られる知見を活用し,伝達学習によるDTI予測の性能向上を目指す。
多様な目標にまたがる活動崖を識別できるAC予測のための普遍モデルが開発された。
このモデルからの洞察をDTI予測に組み込むことで、ACに関わる問題ケースの処理がより良くなり、全体的なパフォーマンスも良好に維持できる。
このアプローチは、薬物発見の予測モデルにAC認識を統合するための強力な基盤を確立する。
科学的コントリビューション この研究は、交流予測から伝達学習を適用してDTI予測を強化し、従来の類似性に基づくモデルの限界に対処する新しいアプローチを示す。
AC-Awarenessを導入することで、構造的に複雑な領域におけるDTIモデルの性能を改善し、複合特異情報とタンパク質コンテキスト情報を統合する利点を実証する。
ACとDTIの予測を別の問題として扱う以前の研究とは異なり、この研究は、薬物発見におけるデータの不足と予測の課題に対処するための統一的な枠組みを確立している。
関連論文リスト
- Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction [1.6954753390775528]
本稿では,インタラクションエージェントを手動で選択し,アテンションスコアの代わりに相関関係を計算するASPILinを提案する。
興味深いことに、InterACTION、HighD、CitySimデータセットで実施された実験は、我々の手法が効率的かつ簡単であることを実証している。
論文 参考訳(メタデータ) (2024-05-21T18:45:18Z) - Towards a more inductive world for drug repurposing approaches [0.545520830707066]
ドラッグ・ターゲット・インタラクション(DTI)の予測は、薬物再資源化において重要な課題である。
DTI予測法は一般化に欠け, インフレーション性能を損なうことを示す。
そこで本研究では, 生物学的に駆動される負のエッジサブサンプリングの戦略を提案し, 新たに発見された相互作用が真であることをin vitroで検証した。
論文 参考訳(メタデータ) (2023-11-21T15:28:44Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
薬物発見の鍵となる側面は、新規な薬物標的相互作用(DT)の同定である。
タンパク質-リガンド相互作用は結合親和性として知られる結合強度の連続性を示す。
性能向上のための新しい改良を提案する。
論文 参考訳(メタデータ) (2023-10-06T05:00:25Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
ヒューマン・オブジェクト・インタラクション(HOI)検出のタスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関関係と反相関が存在することを観察した。
我々は、これらの先行知識を学習し、特に稀なクラスにおいて、より効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T06:02:50Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
本稿では,DTI予測のための深層学習モデル(EnsembleDLM)のアンサンブルを紹介する。
EnsembleDLMは、化学物質やタンパク質の配列情報のみを使用し、複数のディープニューラルネットワークからの予測を集約する。
DavisとKIBAのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-07-02T04:00:03Z) - Drug-Target Interaction Prediction via an Ensemble of Weighted Nearest
Neighbors with Interaction Recovery [5.8683934849211745]
薬物とターゲットの相互作用は、構造ベースの薬物類似性および配列ベースの標的タンパク質類似性によって予測される。
既存の類似性に基づくほとんどの方法は、トランスダクティブな設定に従う。
現在のDTIデータセットにおける大量の欠落した相互作用は、ほとんどのDTI予測方法を妨げる。
WkNNIR (Weighted k Nearest Neighbor with Interaction Recovery) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-22T19:54:18Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
人-物間相互作用(HOI)検出タスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関と反相関が存在することを観察した。
我々はこれらの先行知識を学習し、特に稀なクラスにおいてより効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T02:47:45Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
薬物標的相互作用(DTI)予測は、シリコ薬物発見の基本的な課題である。
近年、DTI予測におけるディープラーニングの進歩が期待されている。
これらの制約に対処する分子間相互作用変換器(TransMol)を提案する。
論文 参考訳(メタデータ) (2020-04-23T18:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。