GFormer: Accelerating Large Language Models with Optimized Transformers on Gaudi Processors
- URL: http://arxiv.org/abs/2412.19829v1
- Date: Thu, 19 Dec 2024 14:50:11 GMT
- Title: GFormer: Accelerating Large Language Models with Optimized Transformers on Gaudi Processors
- Authors: Chengming Zhang, Xinheng Ding, Baixi Sun, Xiaodong Yu, Weijian Zheng, Zhen Xie, Dingwen Tao,
- Abstract summary: Heterogeneous hardware like Gaudi processor has been developed to enhance computations.
Transformers are not fully optimized on such emerging hardware.
integrated approach (called GFormer) that merges sparse linear attention mechanisms.
GFormer significantly improves efficiency and model performance across various tasks on the Gaudi processor.
- Score: 5.432613942292548
- License:
- Abstract: Heterogeneous hardware like Gaudi processor has been developed to enhance computations, especially matrix operations for Transformer-based large language models (LLMs) for generative AI tasks. However, our analysis indicates that Transformers are not fully optimized on such emerging hardware, primarily due to inadequate optimizations in non-matrix computational kernels like Softmax and in heterogeneous resource utilization, particularly when processing long sequences. To address these issues, we propose an integrated approach (called GFormer) that merges sparse and linear attention mechanisms. GFormer aims to maximize the computational capabilities of the Gaudi processor's Matrix Multiplication Engine (MME) and Tensor Processing Cores (TPC) without compromising model quality. GFormer includes a windowed self-attention kernel and an efficient outer product kernel for causal linear attention, aiming to optimize LLM inference on Gaudi processors. Evaluation shows that GFormer significantly improves efficiency and model performance across various tasks on the Gaudi processor and outperforms state-of-the-art GPUs.
Related papers
- Tackling the Dynamicity in a Production LLM Serving System with SOTA Optimizations via Hybrid Prefill/Decode/Verify Scheduling on Efficient Meta-kernels [12.77187564450236]
We introduce XY-Serve, a versatile, Ascend native, end-to-end production large language model (LLM) serving system.
The core idea is an abstraction mechanism that smooths out the workload variability by decomposing computations into fine-grained meta primitives.
For GEMM, we introduce a virtual padding scheme that adapts to dynamic shape changes while using highly efficient GEMM primitives with assorted fixed tile sizes.
arXiv Detail & Related papers (2024-12-24T02:27:44Z) - Gaussian process model kernels for noisy optimization in variational quantum algorithms [0.0]
Variational Quantum Algorithms (VQAs) aim at solving classical or quantum optimization problems by optimizing parametrized trial states on a quantum device, based on the outcomes of noisy projective measurements.
We introduce trigonometric kernels, inspired by the observation that typical VQA cost functions display oscillatory behaviour with only few frequencies.
arXiv Detail & Related papers (2024-12-17T19:05:32Z) - Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - All-to-all reconfigurability with sparse and higher-order Ising machines [0.0]
We introduce a multiplexed architecture that emulates all-to-all network functionality.
We show that running the adaptive parallel tempering algorithm demonstrates competitive algorithmic and prefactor advantages.
scaled magnetic versions of p-bit IMs could lead to orders of magnitude improvements over the state of the art for generic optimization.
arXiv Detail & Related papers (2023-11-21T20:27:02Z) - Benchmarking and In-depth Performance Study of Large Language Models on
Habana Gaudi Processors [5.432613942292548]
Transformer models have achieved remarkable success in various machine learning tasks but suffer from high computational complexity and resource requirements.
Specialized AI hardware accelerators, such as the Habana GAUDI architecture, offer a promising solution to tackle these issues.
This paper explores the untapped potential of using GAUDI processors to accelerate Transformer-based models, addressing key challenges in the process.
arXiv Detail & Related papers (2023-09-29T04:49:35Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
Transformer models achieve superior accuracy across a wide range of applications.
The amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate.
There has been an increased focus on making Transformer models more efficient.
arXiv Detail & Related papers (2023-02-27T18:18:13Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Geometry-aware Bayesian Optimization in Robotics using Riemannian
Mat\'ern Kernels [64.62221198500467]
We show how to implement geometry-aware kernels for Bayesian optimization.
This technique can be used for control parameter tuning, parametric policy adaptation, and structure design in robotics.
arXiv Detail & Related papers (2021-11-02T09:47:22Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - FTRANS: Energy-Efficient Acceleration of Transformers using FPGA [11.032972017827248]
We propose an efficient acceleration framework, Ftrans, for transformer-based large scale language representations.
Our framework significantly reduces the model size of NLP models by up to 16 times.
Our FPGA design achieves 27.07x and 81x improvement in performance and energy efficiency compared to CPU, and up to 8.80x improvement in energy efficiency compared to GPU.
arXiv Detail & Related papers (2020-07-16T18:58:31Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.