Multi-View Fusion Neural Network for Traffic Demand Prediction
- URL: http://arxiv.org/abs/2412.19839v1
- Date: Tue, 24 Dec 2024 09:15:49 GMT
- Title: Multi-View Fusion Neural Network for Traffic Demand Prediction
- Authors: Dongran Zhang, Jun Li,
- Abstract summary: The extraction of spatial-temporal features is a crucial research in transportation studies.
The fixed spatial graph restricts the extraction of spatial features for similar but not directly connected nodes.
A multi-view fusion neural network (MVFN) approach is proposed to address these challenges.
The model has been validated on two traffic demand datasets and achieved the best prediction accuracy.
- Score: 3.4899193297791054
- License:
- Abstract: The extraction of spatial-temporal features is a crucial research in transportation studies, and current studies typically use a unified temporal modeling mechanism and fixed spatial graph for this purpose. However, the fixed spatial graph restricts the extraction of spatial features for similar but not directly connected nodes, while the unified temporal modeling mechanism overlooks the heterogeneity of temporal variation of different nodes. To address these challenges, a multi-view fusion neural network (MVFN) approach is proposed. In this approach, spatial local features are extracted through the use of a graph convolutional network (GCN), and spatial global features are extracted using a cosine re-weighting linear attention mechanism (CLA). The GCN and CLA are combined to create a graph-cosine module (GCM) for the extraction of overall spatial features. Additionally, the multi-channel separable temporal convolutional network (MSTCN) makes use of a multi-channel temporal convolutional network (MTCN) at each layer to extract unified temporal features, and a separable temporal convolutional network (STCN) to extract independent temporal features. Finally, the spatial-temporal feature data is input into the prediction layer to obtain the final result. The model has been validated on two traffic demand datasets and achieved the best prediction accuracy.
Related papers
- Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - It is all Connected: A New Graph Formulation for Spatio-Temporal
Forecasting [1.278093617645299]
We propose a framework for learning temporal and spatial dependencies using Graph Neural Network (GNN) networks.
GNNs represent every sample as its own node in a graph, rather than all measurements for a particular location as a single node.
The framework does not require measurements along the temporal dimension, meaning that it also facilitates irregular time series, different frequencies or missing data, without the need for data sampling imputation.
arXiv Detail & Related papers (2023-03-23T11:16:33Z) - Multi-Scale Spatial Temporal Graph Convolutional Network for
Skeleton-Based Action Recognition [13.15374205970988]
We present a multi-scale spatial graph convolution (MS-GC) module and a multi-scale temporal graph convolution (MT-GC) module.
The MS-GC and MT-GC modules decompose the corresponding local graph convolution into a set of sub-graph convolutions, forming a hierarchical residual architecture.
We propose a multi-scale spatial temporal graph convolutional network (MST-GCN), which stacks multiple blocks to learn effective motion representations for action recognition.
arXiv Detail & Related papers (2022-06-27T03:17:33Z) - Space-Time Graph Neural Networks [104.55175325870195]
We introduce space-time graph neural network (ST-GNN) to jointly process the underlying space-time topology of time-varying network data.
Our analysis shows that small variations in the network topology and time evolution of a system does not significantly affect the performance of ST-GNNs.
arXiv Detail & Related papers (2021-10-06T16:08:44Z) - Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting [22.421667339552467]
Spatial-temporal forecasting has attracted tremendous attention in a wide range of applications, and traffic flow prediction is a canonical and typical example.
Existing works typically utilize shallow graph convolution networks (GNNs) and temporal extracting modules to model spatial and temporal dependencies respectively.
We propose Spatial-Temporal Graph Ordinary Differential Equation Networks (STGODE), which captures spatial-temporal dynamics through a tensor-based ordinary differential equation (ODE)
We evaluate our model on multiple real-world traffic datasets and superior performance is achieved over state-of-the-art baselines.
arXiv Detail & Related papers (2021-06-24T11:48:45Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads.
Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations.
This paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting.
arXiv Detail & Related papers (2020-12-15T14:03:17Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.