Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics
- URL: http://arxiv.org/abs/2408.01701v3
- Date: Sat, 21 Dec 2024 03:47:21 GMT
- Title: Signal-SGN: A Spiking Graph Convolutional Network for Skeletal Action Recognition via Learning Temporal-Frequency Dynamics
- Authors: Naichuan Zheng, Duyu cheng, Hailun Xia, Dapeng Liu,
- Abstract summary: Spiking Neural Networks (SNNs) struggle to model skeleton dynamics, leading to suboptimal solutions.
We propose Signal-SGN (Spiking Graph Convolutional Network), which utilizes the temporal dimension of skeleton sequences as the spike time steps.
Experiments across three large-scale datasets reveal Signal-SGN exceeding state-of-the-art SNN-based methods in accuracy and computational efficiency.
- Score: 2.707548544084083
- License:
- Abstract: For skeleton-based action recognition, Graph Convolutional Networks (GCNs) are effective models. Still, their reliance on floating-point computations leads to high energy consumption, limiting their applicability in battery-powered devices. While energy-efficient, Spiking Neural Networks (SNNs) struggle to model skeleton dynamics, leading to suboptimal solutions. We propose Signal-SGN (Spiking Graph Convolutional Network), which utilizes the temporal dimension of skeleton sequences as the spike time steps and represents features as multi-dimensional discrete stochastic signals for temporal-frequency domain feature extraction. It combines the 1D Spiking Graph Convolution (1D-SGC) module and the Frequency Spiking Convolution (FSC) module to extract features from the skeleton represented as spiking form. Additionally, the Multi-Scale Wavelet Transform Feature Fusion (MWTF) module is proposed to extract dynamic spiking features and capture frequency-specific characteristics, enhancing classification performance. Experiments across three large-scale datasets reveal Signal-SGN exceeding state-of-the-art SNN-based methods in accuracy and computational efficiency while attaining comparable performance with GCN methods and significantly reducing theoretical energy consumption.
Related papers
- DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - MK-SGN: A Spiking Graph Convolutional Network with Multimodal Fusion and Knowledge Distillation for Skeleton-based Action Recognition [0.8942525984879532]
MK-SGN is proposed to leverage the energy efficiency of Spiking Neural Networks (SNNs) for skeleton-based action recognition.
By integrating the energy-saving properties of SNNs with the graph representation capabilities of GCNs, MK-SGN achieves significant reductions in energy consumption.
The proposed method achieves a remarkable reduction in energy consumption, exceeding 98% compared to conventional GCN-based approaches.
arXiv Detail & Related papers (2024-04-16T01:41:22Z) - Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN.
We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node.
arXiv Detail & Related papers (2024-04-03T10:25:45Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Multi-Scale Spatial Temporal Graph Convolutional Network for
Skeleton-Based Action Recognition [13.15374205970988]
We present a multi-scale spatial graph convolution (MS-GC) module and a multi-scale temporal graph convolution (MT-GC) module.
The MS-GC and MT-GC modules decompose the corresponding local graph convolution into a set of sub-graph convolutions, forming a hierarchical residual architecture.
We propose a multi-scale spatial temporal graph convolutional network (MST-GCN), which stacks multiple blocks to learn effective motion representations for action recognition.
arXiv Detail & Related papers (2022-06-27T03:17:33Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - ScalingNet: extracting features from raw EEG data for emotion
recognition [4.047737925426405]
We propose a novel convolutional layer allowing to adaptively extract effective data-driven spectrogram-like features from raw EEG signals.
The proposed neural network architecture based on the scaling layer, references as ScalingNet, has achieved the state-of-the-art result across the established DEAP benchmark dataset.
arXiv Detail & Related papers (2021-02-07T08:54:27Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Temporal Attention-Augmented Graph Convolutional Network for Efficient
Skeleton-Based Human Action Recognition [97.14064057840089]
Graphal networks (GCNs) have been very successful in modeling non-Euclidean data structures.
Most GCN-based action recognition methods use deep feed-forward networks with high computational complexity to process all skeletons in an action.
We propose a temporal attention module (TAM) for increasing the efficiency in skeleton-based action recognition.
arXiv Detail & Related papers (2020-10-23T08:01:55Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.