Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection
- URL: http://arxiv.org/abs/2412.19843v1
- Date: Tue, 24 Dec 2024 15:44:26 GMT
- Title: Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection
- Authors: Owais Ishtiaq Siddiqui, Nouhaila Innan, Alberto Marchisio, Mohamed Bennai, Muhammad Shafique,
- Abstract summary: This paper introduces a novel Bayesian approach using Quantum Bayesian Networks (QBNs) to classify imbalanced datasets.
We effectively address the challenge of integrating quantum enhancements with classical machine learning architectures.
Our study demonstrates significant advances in detecting and classifying anomalies, contributing to more effective and precise environmental monitoring and management.
- Score: 3.9554540293311864
- License:
- Abstract: Quantum Machine Learning (QML) has shown promise in diverse applications such as environmental monitoring, healthcare diagnostics, and financial modeling. However, the practical application of QML faces challenges, such as the limited availability of quantum hardware and the complexity of integrating quantum algorithms with classical systems. This paper introduces a novel Bayesian approach using Quantum Bayesian Networks (QBNs) to classify imbalanced datasets, focusing on differentiating ``oil-spill'' from ``non-spill'' classes in satellite-derived data. By employing QBNs, which combine probabilistic reasoning with quantum state preparation, we effectively address the challenge of integrating quantum enhancements with classical machine learning architectures. While the integration improves key performance metrics, it also uncovers areas for refinement, highlighting the need for customized strategies to address specific challenges and optimize outcomes. Our study demonstrates significant advances in detecting and classifying anomalies, contributing to more effective and precise environmental monitoring and management.
Related papers
- Comprehensive Survey of QML: From Data Analysis to Algorithmic Advancements [2.5686697584463025]
Quantum Machine Learning represents a paradigm shift at the intersection of Quantum Computing and Machine Learning.
The field faces significant challenges, including hardware constraints, noise, and limited qubit coherence.
This survey aims to provide a foundational resource for advancing Quantum Machine Learning toward practical, real-world applications.
arXiv Detail & Related papers (2025-01-16T13:25:49Z) - A learning agent-based approach to the characterization of open quantum systems [0.0]
We introduce the open Quantum Model Learning Agent (oQMLA) framework to account for Markovian noise through the Liouvillian formalism.
By simultaneously learning the Hamiltonian and jump operators, oQMLA independently captures both the coherent and incoherent dynamics of a system.
We validate our implementation in simulated scenarios of increasing complexity, demonstrating its robustness to hardware-induced measurement errors.
arXiv Detail & Related papers (2025-01-09T16:25:17Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.