DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
- URL: http://arxiv.org/abs/2503.22988v2
- Date: Tue, 01 Apr 2025 03:25:37 GMT
- Title: DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
- Authors: Chengkun Wei, Weixian Li, Chen Gong, Wenzhi Chen,
- Abstract summary: We propose Dynamic Clipping DP-SGD (DC-SGD), a framework that dynamically adjust the clipping threshold C.<n>DC-SGD-P adjusts the clipping threshold based on a percentile of gradient norms, while DC-SGD-E minimizes the expected squared error of gradients to optimize C.<n>Our results highlight the robust performance and efficiency of DC-SGD, offering a practical solution for differentially private deep learning.
- Score: 11.216548916537699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially Private Stochastic Gradient Descent (DP-SGD) is a widely adopted technique for privacy-preserving deep learning. A critical challenge in DP-SGD is selecting the optimal clipping threshold C, which involves balancing the trade-off between clipping bias and noise magnitude, incurring substantial privacy and computing overhead during hyperparameter tuning. In this paper, we propose Dynamic Clipping DP-SGD (DC-SGD), a framework that leverages differentially private histograms to estimate gradient norm distributions and dynamically adjust the clipping threshold C. Our framework includes two novel mechanisms: DC-SGD-P and DC-SGD-E. DC-SGD-P adjusts the clipping threshold based on a percentile of gradient norms, while DC-SGD-E minimizes the expected squared error of gradients to optimize C. These dynamic adjustments significantly reduce the burden of hyperparameter tuning C. The extensive experiments on various deep learning tasks, including image classification and natural language processing, show that our proposed dynamic algorithms achieve up to 9 times acceleration on hyperparameter tuning than DP-SGD. And DC-SGD-E can achieve an accuracy improvement of 10.62% on CIFAR10 than DP-SGD under the same privacy budget of hyperparameter tuning. We conduct rigorous theoretical privacy and convergence analyses, showing that our methods seamlessly integrate with the Adam optimizer. Our results highlight the robust performance and efficiency of DC-SGD, offering a practical solution for differentially private deep learning with reduced computational overhead and enhanced privacy guarantees.
Related papers
- On the Convergence of DP-SGD with Adaptive Clipping [56.24689348875711]
Gradient Descent with gradient clipping is a powerful technique for enabling differentially private optimization.<n>This paper provides the first comprehensive convergence analysis of SGD with quantile clipping (QC-SGD)<n>We show how QC-SGD suffers from a bias problem similar to constant-threshold clipped SGD but can be mitigated through a carefully designed quantile and step size schedule.
arXiv Detail & Related papers (2024-12-27T20:29:47Z) - Enhancing DP-SGD through Non-monotonous Adaptive Scaling Gradient Weight [15.139854970044075]
We introduce Differentially Private Per-sample Adaptive Scaling Clipping (DP-PSASC)
This approach replaces traditional clipping with non-monotonous adaptive gradient scaling.
Our theoretical and empirical analyses confirm that DP-PSASC preserves gradient privacy and delivers superior performance across diverse datasets.
arXiv Detail & Related papers (2024-11-05T12:47:30Z) - DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction [57.83978915843095]
This paper introduces DiSK, a novel framework designed to significantly enhance the performance of differentially private gradients.
To ensure practicality for large-scale training, we simplify the Kalman filtering process, minimizing its memory and computational demands.
arXiv Detail & Related papers (2024-10-04T19:30:39Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Using Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) to ensure Differential Privacy (DP) comes at the cost of model performance degradation.
We propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC.
We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R'enyi DP.
arXiv Detail & Related papers (2023-11-24T17:56:44Z) - Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in
Private SGD [56.01810892677744]
We show a connection between per-sample gradient norms and the estimation bias of the private gradient oracle used in DP-SGD.
We propose Bias-Aware Minimisation (BAM) that allows for the provable reduction of private gradient estimator bias.
arXiv Detail & Related papers (2023-08-23T09:20:41Z) - DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling [23.8561225168394]
differential privacy (DP) has become a well-accepted standard for privacy protection, and deep neural networks (DNN) have been immensely successful in machine learning.
A classic mechanism for this purpose is DP-SGD, which is a differentially private version of the gradient descent (SGD) commonly used for training.
We propose DPIS, a novel mechanism for differentially private SGD training that can be used as a drop-in replacement of the core of DP-SGD.
arXiv Detail & Related papers (2022-10-18T07:03:14Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Improving Differentially Private SGD via Randomly Sparsified Gradients [31.295035726077366]
Differentially private gradient observation (DP-SGD) has been widely adopted in deep learning to provide rigorously defined privacy bound compression.
We propose an and utilize RS to strengthen communication cost and strengthen privacy bound compression.
arXiv Detail & Related papers (2021-12-01T21:43:34Z) - Dynamic Differential-Privacy Preserving SGD [19.273542515320372]
Differentially-Private Gradient Descent (DP-SGD) prevents training-data privacy breaches by adding noise to the clipped gradient during SGD training.
The same clipping operation and additive noise across training steps results in unstable updates and even a ramp-up period.
We propose the dynamic DP-SGD, which has a lower privacy cost than the DP-SGD during updates until they achieve the same target privacy budget.
arXiv Detail & Related papers (2021-10-30T04:45:11Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
We show that differentially private gradient descent (DP-SGD) can yield poorly calibrated, overconfident deep learning models.
This represents a serious issue for safety-critical applications, e.g. in medical diagnosis.
arXiv Detail & Related papers (2021-07-09T08:14:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.