論文の概要: STAYKATE: Hybrid In-Context Example Selection Combining Representativeness Sampling and Retrieval-based Approach -- A Case Study on Science Domains
- arxiv url: http://arxiv.org/abs/2412.20043v1
- Date: Sat, 28 Dec 2024 06:13:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:01:23.225608
- Title: STAYKATE: Hybrid In-Context Example Selection Combining Representativeness Sampling and Retrieval-based Approach -- A Case Study on Science Domains
- Title(参考訳): STAYKATE: 主観的サンプリングと検索的アプローチを組み合わせたハイブリッドインテクスト事例選択 - 科学領域を事例として-
- Authors: Chencheng Zhu, Kazutaka Shimada, Tomoki Taniguchi, Tomoko Ohkuma,
- Abstract要約: 大規模言語モデル(LLM)は、科学的な情報抽出のための潜在的なソリューションを提供する、文脈内で学習する能力を示す。
STAYKATE(StaYKATE)は,アクティブラーニングからの代表性サンプリングの原理と,一般的な検索に基づくアプローチを組み合わせた静的・動的ハイブリッド選択法である。
3つのドメイン固有のデータセットにまたがる結果は、STAYKATEが従来の教師付き手法と既存の選択方法の両方より優れていることを示している。
- 参考スコア(独自算出の注目度): 0.8296121350988481
- License:
- Abstract: Large language models (LLMs) demonstrate the ability to learn in-context, offering a potential solution for scientific information extraction, which often contends with challenges such as insufficient training data and the high cost of annotation processes. Given that the selection of in-context examples can significantly impact performance, it is crucial to design a proper method to sample the efficient ones. In this paper, we propose STAYKATE, a static-dynamic hybrid selection method that combines the principles of representativeness sampling from active learning with the prevalent retrieval-based approach. The results across three domain-specific datasets indicate that STAYKATE outperforms both the traditional supervised methods and existing selection methods. The enhancement in performance is particularly pronounced for entity types that other methods pose challenges.
- Abstract(参考訳): 大規模言語モデル(LLM)は文脈内で学習する能力を示し、科学的情報抽出の潜在的な解決策を提供する。
文脈内サンプルの選択が性能に大きく影響することを考えると、効率的なサンプルを適切に設計することが重要である。
本稿では,能動学習における代表性サンプリングの原理と,一般的な検索手法を組み合わせた静的・動的ハイブリッド選択法であるSTAYKATEを提案する。
3つのドメイン固有のデータセットにまたがる結果は、STAYKATEが従来の教師付き手法と既存の選択方法の両方より優れていることを示している。
パフォーマンスの向上は、他のメソッドが問題を引き起こすエンティティタイプに対して特に顕著です。
関連論文リスト
- Diversified Batch Selection for Training Acceleration [68.67164304377732]
オンラインバッチ選択として知られる一般的な研究ラインでは、トレーニングプロセス中の情報サブセットの選択について検討している。
バニラ参照モデルフリーメソッドは、独立してデータをサンプリング的にスコア付けし、選択する。
DivBS(Diversified Batch Selection)を提案する。
論文 参考訳(メタデータ) (2024-06-07T12:12:20Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を用いて広範囲のタスクを実行するという印象的な能力を示している。
本研究ではまず,データとモデルの両方の側面から,この分散に寄与する要因を再検討し,実演の選択がデータとモデルに依存していることを確かめる。
本研究では,データとモデルに依存した実演選択手法である textbfTopK + ConE を提案する。
論文 参考訳(メタデータ) (2024-01-22T16:25:27Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
コアセット選択とアクティブラーニングの両方に対処するための理論的に最適な解を提案する。
提案手法であるCOPSは,サブサンプルデータに基づいてトレーニングされたモデルの損失を最小限に抑えるために設計されている。
論文 参考訳(メタデータ) (2023-09-05T14:06:33Z) - Multi-Task Learning with Summary Statistics [4.871473117968554]
様々な情報源からの要約統計を利用した柔軟なマルチタスク学習フレームワークを提案する。
また,Lepskiの手法の変種に基づく適応パラメータ選択手法を提案する。
この研究は、さまざまな領域にわたる関連するモデルをトレーニングするための、より柔軟なツールを提供する。
論文 参考訳(メタデータ) (2023-07-05T15:55:23Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
In-Context Learning (RetICL) のための検索式を提案する。
RetICLは数学用語の問題解決と科学的質問応答のタスクに基づいて評価し,一貫した性能や一致,学習可能なベースラインを示す。
論文 参考訳(メタデータ) (2023-05-23T20:15:56Z) - Active Learning Principles for In-Context Learning with Large Language
Models [65.09970281795769]
本稿では,アクティブ・ラーニング・アルゴリズムが,文脈内学習における効果的な実演選択手法としてどのように機能するかを検討する。
ALによる文脈内サンプル選択は,不確実性の低い高品質な事例を優先し,試験例と類似性を有することを示す。
論文 参考訳(メタデータ) (2023-05-23T17:16:04Z) - Compositional Exemplars for In-context Learning [21.961094715261133]
大規模な事前学習言語モデル(LM)は、印象的なインコンテキスト学習(ICL)能力を示している。
本稿では,CEIL (Compositional Exemplars for In-context Learning) を提案する。
我々は、感情分析、パラフレーズ検出、自然言語推論、コモンセンス推論、オープンドメイン質問応答、コード生成、意味解析を含む7つの異なるNLPタスクから、CEILを12の分類および生成データセットで検証する。
論文 参考訳(メタデータ) (2023-02-11T14:02:08Z) - An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction [27.10815774845461]
本稿では,ソース・クラウド・シナリオに基づいて学習したモデルの一般化を特徴付ける新しいスコアリング手法を提案する。
インタラクションコンポーネントはシナリオドメインの難易度を特徴付けることを目的としており、シナリオドメインの多様性はダイバーシティスコアで取得される。
提案手法の有効性をシミュレーションおよび実世界(ソース,ターゲット)の一般化タスクで検証した。
論文 参考訳(メタデータ) (2022-11-02T01:39:30Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。