Machine and Deep Learning for Credit Scoring: A compliant approach
- URL: http://arxiv.org/abs/2412.20225v1
- Date: Sat, 28 Dec 2024 17:46:43 GMT
- Title: Machine and Deep Learning for Credit Scoring: A compliant approach
- Authors: Abdollah Rida,
- Abstract summary: This paper is a tentative to challenge the current regulatory status-quo and introduce new BASEL 2 and 3 compliant techniques.
We prove that the usage of such algorithms drastically improves performance and default capture rate.
Furthermore, we leverage the power of Shapley Values to prove that these relatively simple models are not as black-box as the current regulatory system thinks they are.
- Score: 0.0
- License:
- Abstract: Credit Scoring is one of the problems banks and financial institutions have to solve on a daily basis. If the state-of-the-art research in Machine and Deep Learning for finance has reached interesting results about Credit Scoring models, usage of such models in a heavily regulated context such as the one in banks has never been done so far. Our work is thus a tentative to challenge the current regulatory status-quo and introduce new BASEL 2 and 3 compliant techniques, while still answering the Federal Reserve Bank and the European Central Bank requirements. With the help of Gradient Boosting Machines (mainly XGBoost) we challenge an actual model used by BANK A for scoring through the door Auto Loan applicants. We prove that the usage of such algorithms for Credit Scoring models drastically improves performance and default capture rate. Furthermore, we leverage the power of Shapley Values to prove that these relatively simple models are not as black-box as the current regulatory system thinks they are, and we attempt to explain the model outputs and Credit Scores within the BANK A Model Design and Validation framework
Related papers
- Enhanced Credit Score Prediction Using Ensemble Deep Learning Model [12.85570952381681]
This paper combines high-performance models like XGBoost and LightGBM, already widely used in modern banking systems, with the powerful TabNet model.
We have developed a potent model capable of accurately determining credit score levels by integrating Random Forest, XGBoost, and TabNet, and through the stacking technique in ensemble modeling.
arXiv Detail & Related papers (2024-09-30T21:56:16Z) - Advanced User Credit Risk Prediction Model using LightGBM, XGBoost and Tabnet with SMOTEENN [8.225603728650478]
We use a dataset of over 40,000 records provided by a commercial bank as the research object.
Experiments demonstrated that LightGBM combined with PCA and SMOTEENN techniques can assist banks in accurately predicting potential high-quality customers.
arXiv Detail & Related papers (2024-08-07T01:37:10Z) - Towards Evaluating Transfer-based Attacks Systematically, Practically,
and Fairly [79.07074710460012]
adversarial vulnerability of deep neural networks (DNNs) has drawn great attention.
An increasing number of transfer-based methods have been developed to fool black-box DNN models.
We establish a transfer-based attack benchmark (TA-Bench) which implements 30+ methods.
arXiv Detail & Related papers (2023-11-02T15:35:58Z) - Empowering Many, Biasing a Few: Generalist Credit Scoring through Large
Language Models [53.620827459684094]
Large Language Models (LLMs) have great potential for credit scoring tasks, with strong generalization ability across multiple tasks.
We propose the first open-source comprehensive framework for exploring LLMs for credit scoring.
We then propose the first Credit and Risk Assessment Large Language Model (CALM) by instruction tuning, tailored to the nuanced demands of various financial risk assessment tasks.
arXiv Detail & Related papers (2023-10-01T03:50:34Z) - Would I have gotten that reward? Long-term credit assignment by
counterfactual contribution analysis [50.926791529605396]
We introduce Counterfactual Contribution Analysis (COCOA), a new family of model-based credit assignment algorithms.
Our algorithms achieve precise credit assignment by measuring the contribution of actions upon obtaining subsequent rewards.
arXiv Detail & Related papers (2023-06-29T09:27:27Z) - Neural Pseudo-Label Optimism for the Bank Loan Problem [78.66533961716728]
We study a class of classification problems best exemplified by the emphbank loan problem.
In the case of linear models, this issue can be addressed by adding optimism directly into the model predictions.
We present Pseudo-Label Optimism (PLOT), a conceptually and computationally simple method for this setting applicable to Deep Neural Networks.
arXiv Detail & Related papers (2021-12-03T22:46:31Z) - Predicting Credit Risk for Unsecured Lending: A Machine Learning
Approach [0.0]
This research paper is to build a contemporary credit scoring model to forecast credit defaults for unsecured lending (credit cards)
Our research indicates that the Light Gradient Boosting Machine (LGBM) model is better equipped to deliver higher learning speeds, better efficiencies and manage larger data volumes.
We expect that deployment of this model will enable better and timely prediction of credit defaults for decision-makers in commercial lending institutions and banks.
arXiv Detail & Related papers (2021-10-05T17:54:56Z) - Bagging Supervised Autoencoder Classifier for Credit Scoring [3.5977219275318166]
The imbalanced nature of credit scoring datasets, as well as the heterogeneous nature of features in credit scoring datasets, pose difficulties in developing and implementing effective credit scoring models.
We propose the Bagging Supervised Autoencoder (BSAC) that mainly leverages the superior performance of the Supervised Autoencoder.
BSAC also addresses the data imbalance problem by employing a variant of the Bagging process based on the undersampling of the majority class.
arXiv Detail & Related papers (2021-08-12T17:49:08Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z) - Explainable AI for Interpretable Credit Scoring [0.8379286663107844]
Credit scoring helps financial experts make better decisions regarding whether or not to accept a loan application.
Regulations have added the need for model interpretability to ensure that algorithmic decisions are understandable coherent.
We present a credit scoring model that is both accurate and interpretable.
arXiv Detail & Related papers (2020-12-03T18:44:03Z) - Super-App Behavioral Patterns in Credit Risk Models: Financial,
Statistical and Regulatory Implications [110.54266632357673]
We present the impact of alternative data that originates from an app-based marketplace, in contrast to traditional bureau data, upon credit scoring models.
Our results, validated across two countries, show that these new sources of data are particularly useful for predicting financial behavior in low-wealth and young individuals.
arXiv Detail & Related papers (2020-05-09T01:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.