論文の概要: Leveraging Large Language Models for Enhancing Autonomous Vehicle Perception
- arxiv url: http://arxiv.org/abs/2412.20230v1
- Date: Sat, 28 Dec 2024 17:58:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:04:53.998748
- Title: Leveraging Large Language Models for Enhancing Autonomous Vehicle Perception
- Title(参考訳): 自動運転車の認識を高めるための大規模言語モデルの導入
- Authors: Athanasios Karagounis,
- Abstract要約: 大規模言語モデル(LLM)は、動的環境、センサー融合、文脈推論の課題に対処するために用いられる。
本稿では,ALMをAV知覚に組み込むことにより,文脈理解の高度化を実現する新しい枠組みを提案する。
実験により,LLMはAV知覚システムの精度と信頼性を著しく向上することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Autonomous vehicles (AVs) rely on sophisticated perception systems to interpret their surroundings, a cornerstone for safe navigation and decision-making. The integration of Large Language Models (LLMs) into AV perception frameworks offers an innovative approach to address challenges in dynamic environments, sensor fusion, and contextual reasoning. This paper presents a novel framework for incorporating LLMs into AV perception, enabling advanced contextual understanding, seamless sensor integration, and enhanced decision support. Experimental results demonstrate that LLMs significantly improve the accuracy and reliability of AV perception systems, paving the way for safer and more intelligent autonomous driving technologies. By expanding the scope of perception beyond traditional methods, LLMs contribute to creating a more adaptive and human-centric driving ecosystem, making autonomous vehicles more reliable and transparent in their operations. These advancements redefine the relationship between human drivers and autonomous systems, fostering trust through enhanced understanding and personalized decision-making. Furthermore, by integrating memory modules and adaptive learning mechanisms, LLMs introduce continuous improvement in AV perception, enabling vehicles to evolve with time and adapt to changing environments and user preferences.
- Abstract(参考訳): 自動運転車(AV)は、周囲を解釈するために洗練された認識システムに依存しており、安全なナビゲーションと意思決定の基盤となっている。
大規模言語モデル(LLM)をAV認識フレームワークに統合することは、動的環境、センサー融合、コンテキスト推論といった課題に対処するための革新的なアプローチを提供する。
本稿では,ALMをAV知覚に組み込むことにより,文脈理解の高度化,シームレスなセンサ統合,意思決定支援の強化を実現した新しいフレームワークを提案する。
実験により、LLMはAV認識システムの精度と信頼性を著しく向上し、より安全でインテリジェントな自動運転技術への道を開いた。
従来の方法を超えて知覚の範囲を広げることによって、LLMはより適応的で人間中心の運転エコシステムの構築に貢献し、自動運転車の運用をより信頼性と透明性を高める。
これらの進歩は、人間のドライバーと自律システムとの関係を再定義し、理解とパーソナライズされた意思決定を通じて信頼を育む。
さらに、メモリモジュールと適応学習機構を統合することで、LLMはAV知覚の継続的な改善を導入し、車両が時間とともに進化し、変化する環境やユーザの好みに適応できるようにする。
関連論文リスト
- Integrating Large Language Models for UAV Control in Simulated Environments: A Modular Interaction Approach [0.3495246564946556]
本研究では,UAV制御における大規模言語モデルの適用について検討する。
UAVが自然言語コマンドを解釈し、応答できるようにすることで、LLMはUAVの制御と使用を簡素化する。
本稿では,自律的な意思決定,動的なミッション計画,状況認識の向上,安全プロトコルの改善など,LCMがUAV技術に影響を与えるいくつかの重要な領域について論じる。
論文 参考訳(メタデータ) (2024-10-23T06:56:53Z) - Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Simulation, and Real-Vehicle Experiment [15.52530518623987]
大規模言語モデル(LLM)は、自律運転システムの様々な側面を強化する可能性を秘めている。
本稿では,LLMを自動走行(LLM4AD)用に設計するための新しい概念とアプローチを紹介する。
論文 参考訳(メタデータ) (2024-10-20T04:36:19Z) - Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
本稿では,基本認識モジュールとユーザフレンドリなグラフィカルインタフェースのライブラリの提供を目的とした,新しい階層的BEV知覚パラダイムを提案する。
我々は,大規模公開データセットと合理化開発プロセスを効果的に活用するために,Pretrain-Finetune戦略を実行している。
また、マルチモジュールラーニング(MML)アプローチを提案し、複数のモデルの相乗的かつ反復的な訓練により性能を向上させる。
論文 参考訳(メタデータ) (2024-07-17T11:17:20Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
本稿では、画像とテキストで検索可能な表現から、運転決定を提供することができる、エンドツーエンドのオープンセット(環境/シーン)自律運転を適用するアプローチを提案する。
当社のアプローチでは, 多様なテストにおいて非並列的な結果を示すと同時に, アウト・オブ・ディストリビューションの状況において, はるかに高いロバスト性を実現している。
論文 参考訳(メタデータ) (2023-10-26T17:56:35Z) - Receive, Reason, and React: Drive as You Say with Large Language Models
in Autonomous Vehicles [13.102404404559428]
本稿では,Large Language Models (LLMs) を利用した自律走行車における意思決定プロセスを強化する新しいフレームワークを提案する。
我々の研究は、自動運転と戦術的意思決定タスクのための環境の集合であるHighwayEnvの実験を含む。
また、リアルタイムのパーソナライズも検討し、LLMが音声コマンドに基づいて運転行動にどう影響するかを示す。
論文 参考訳(メタデータ) (2023-10-12T04:56:01Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Drive as You Speak: Enabling Human-Like Interaction with Large Language
Models in Autonomous Vehicles [13.102404404559428]
本稿では,Large Language Models (LLMs) を利用して自動運転車の意思決定プロセスを強化する新しいフレームワークを提案する。
提案されたフレームワークは、自動運転車の運転方法に革命をもたらす可能性を秘めており、パーソナライズされた支援、継続的学習、透明性のある意思決定を提供する。
論文 参考訳(メタデータ) (2023-09-19T00:47:13Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。