High-fidelity social learning via shared episodic memories enhances collaborative foraging through mnemonic convergence
- URL: http://arxiv.org/abs/2412.20271v1
- Date: Sat, 28 Dec 2024 20:55:38 GMT
- Title: High-fidelity social learning via shared episodic memories enhances collaborative foraging through mnemonic convergence
- Authors: Ismael T. Freire, Paul Verschure,
- Abstract summary: Social learning enables individuals to acquire knowledge by observing and imitating others.
This study explores the interrelation between episodic memory and social learning in collective foraging.
- Score: 0.0
- License:
- Abstract: Social learning, a cornerstone of cultural evolution, enables individuals to acquire knowledge by observing and imitating others. At the heart of its efficacy lies episodic memory, which encodes specific behavioral sequences to facilitate learning and decision-making. This study explores the interrelation between episodic memory and social learning in collective foraging. Using Sequential Episodic Control (SEC) agents capable of sharing complete behavioral sequences stored in episodic memory, we investigate how variations in the frequency and fidelity of social learning influence collaborative foraging performance. Furthermore, we analyze the effects of social learning on the content and distribution of episodic memories across the group. High-fidelity social learning is shown to consistently enhance resource collection efficiency and distribution, with benefits sustained across memory lengths. In contrast, low-fidelity learning fails to outperform nonsocial learning, spreading diverse but ineffective mnemonic patterns. Novel analyses using mnemonic metrics reveal that high-fidelity social learning also fosters mnemonic group alignment and equitable resource distribution, while low-fidelity conditions increase mnemonic diversity without translating to performance gains. Additionally, we identify an optimal range for episodic memory length in this task, beyond which performance plateaus. These findings underscore the critical effects of social learning on mnemonic group alignment and distribution and highlight the potential of neurocomputational models to probe the cognitive mechanisms driving cultural evolution.
Related papers
- Feasibility of assessing cognitive impairment via distributed camera network and privacy-preserving edge computing [2.2231315943430143]
Mild cognitive impairment (MCI) is characterized by a decline in cognitive functions beyond typical age and education-related expectations.
We developed movement and social interaction features, which were then used to train a series of machine learning algorithms.
Despite lacking individual identifiers to associate with specific levels of MCI, a machine learning approach using the most significant features provided 71% accuracy.
arXiv Detail & Related papers (2024-08-19T22:34:43Z) - Towards a Psychology of Machines: Large Language Models Predict Human Memory [0.0]
Large language models (LLMs) have shown remarkable abilities in natural language processing.
This study explores whether LLMs can predict human memory performance in tasks involving garden-path sentences and contextual information.
arXiv Detail & Related papers (2024-03-08T08:41:14Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
Continual learning aims to empower artificial intelligence with strong adaptability to the real world.
Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting.
We propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity.
arXiv Detail & Related papers (2023-08-29T02:43:58Z) - Predicting the long-term collective behaviour of fish pairs with deep learning [52.83927369492564]
This study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus.
We compare the results of our deep learning approach to experiments and to the results of a state-of-the-art analytical model.
We demonstrate that machine learning models social interactions can directly compete with their analytical counterparts in subtle experimental observables.
arXiv Detail & Related papers (2023-02-14T05:25:03Z) - Flexible social inference facilitates targeted social learning when
rewards are not observable [58.762004496858836]
Groups coordinate more effectively when individuals are able to learn from others' successes.
We suggest that social inference capacities may help bridge this gap, allowing individuals to update their beliefs about others' underlying knowledge and success from observable trajectories of behavior.
arXiv Detail & Related papers (2022-12-01T21:04:03Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Social learning spontaneously emerges by searching optimal heuristics
with deep reinforcement learning [0.0]
We employ a deep reinforcement learning model to optimize the social learning strategies of agents in a cooperative game in a multi-dimensional landscape.
We find that the agent spontaneously learns various concepts of social learning, such as copying, focusing on frequent and well-performing neighbors, self-comparison, and the importance of balancing between individual and social learning.
We demonstrate the superior performance of the reinforcement learning agent in various environments, including temporally changing environments and real social networks.
arXiv Detail & Related papers (2022-04-26T15:10:27Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - SensAI+Expanse Emotional Valence Prediction Studies with Cognition and
Memory Integration [0.0]
This work contributes with an artificial intelligent agent able to assist on cognitive science studies.
The developed artificial agent system (SensAI+Expanse) includes machine learning algorithms, empathetic algorithms, and memory.
Results of the present study show evidence of significant emotional behaviour differences between some age ranges and gender combinations.
arXiv Detail & Related papers (2020-01-03T18:17:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.