論文の概要: Few-shot Algorithm Assurance
- arxiv url: http://arxiv.org/abs/2412.20275v1
- Date: Sat, 28 Dec 2024 21:11:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:06:27.513825
- Title: Few-shot Algorithm Assurance
- Title(参考訳): 少数ショットアルゴリズム保証
- Authors: Dang Nguyen, Sunil Gupta,
- Abstract要約: 深層学習モデルは 画像の歪みに弱い
画像歪み下のモデル保証は分類タスクである。
条件付きレベルセット推定アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 11.924406021826606
- License:
- Abstract: In image classification tasks, deep learning models are vulnerable to image distortion. For successful deployment, it is important to identify distortion levels under which the model is usable i.e. its accuracy stays above a stipulated threshold. We refer to this problem as Model Assurance under Image Distortion, and formulate it as a classification task. Given a distortion level, our goal is to predict if the model's accuracy on the set of distorted images is greater than a threshold. We propose a novel classifier based on a Level Set Estimation (LSE) algorithm, which uses the LSE's mean and variance functions to form the classification rule. We further extend our method to a "few sample" setting where we can only acquire few real images to perform the model assurance process. Our idea is to generate extra synthetic images using a novel Conditional Variational Autoencoder model with two new loss functions. We conduct extensive experiments to show that our classification method significantly outperforms strong baselines on five benchmark image datasets.
- Abstract(参考訳): 画像分類タスクでは、深層学習モデルは画像歪みに弱い。
デプロイを成功させるためには、モデルが使用可能な歪みレベルを特定することが重要である。
本稿では、この問題を画像歪み下でのモデル保証と呼び、分類タスクとして定式化する。
歪みレベルが与えられた場合、歪み画像の集合におけるモデルの精度がしきい値より大きいかどうかを予測することが目的である。
本稿では,LSEの平均値と分散関数を用いて分類規則を構成する,レベルセット推定(LSE)アルゴリズムに基づく新しい分類法を提案する。
さらに、モデル保証プロセスを実行するために、実際の画像しか取得できない「ファウサンプル」設定にメソッドを拡張します。
我々の考えは、2つの新しい損失関数を持つ条件付き変分オートエンコーダモデルを用いて、余分な合成画像を生成することである。
我々は,5つのベンチマーク画像データセットにおいて,分類法が強いベースラインを著しく上回ることを示すため,広範囲な実験を行った。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Diversified in-domain synthesis with efficient fine-tuning for few-shot
classification [64.86872227580866]
画像分類は,クラスごとのラベル付き例の小さなセットのみを用いて,画像分類器の学習を目的としている。
合成データを用いた数ショット学習における一般化問題に対処する新しいアプローチである DisEF を提案する。
提案手法を10種類のベンチマークで検証し,ベースラインを一貫して上回り,数ショット分類のための新しい最先端の手法を確立した。
論文 参考訳(メタデータ) (2023-12-05T17:18:09Z) - Benchmark Generation Framework with Customizable Distortions for Image
Classifier Robustness [4.339574774938128]
本稿では,画像分類モデルのロバスト性を評価するために,逆ベンチマークを生成する新しいフレームワークを提案する。
当社のフレームワークでは,画像に最適な歪みの種類をカスタマイズすることが可能で,デプロイメントに関連する歪みに対処する上で有効である。
論文 参考訳(メタデータ) (2023-10-28T07:40:42Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) は、高品質な参照画像を必要としない、人間の知覚に合わせて画像品質を測定する手法を開発することを目的としている。
本研究では、画像歪み多様体をモデル化し、本質的な表現を得るための自己教師型アプローチ ARNIQA を提案する。
論文 参考訳(メタデータ) (2023-10-20T17:22:25Z) - Few-shot Image Classification based on Gradual Machine Learning [6.935034849731568]
少ないショット画像分類は、ラベル付きサンプルのみを使用してラベル付きイメージを正確に分類することを目的としている。
段階的機械学習(GML)の非i.dパラダイムに基づく新しいアプローチを提案する。
提案手法は精度でSOTAの性能を1-5%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-07-28T12:30:41Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
特に、異なるResNet、VGGNetアーキテクチャをバックボーンとして使用するRetinaNetモデルをトレーニングする。
そこで本研究では,異なるモデルからの出力予測を組み合わせることで,欠陥の分類と検出に優れた性能を実現するための選好に基づくアンサンブル戦略を提案する。
論文 参考訳(メタデータ) (2022-06-20T16:34:11Z) - Ortho-Shot: Low Displacement Rank Regularization with Data Augmentation
for Few-Shot Learning [23.465747123791772]
少数の分類において、第一の目的は、新しいクラスをうまく一般化する表現を学ぶことである。
オルソショット(Ortho-Shot)と呼ばれる効率的な低変位ランク(LDR)正規化戦略を提案する。
論文 参考訳(メタデータ) (2021-10-18T14:58:36Z) - Scene Uncertainty and the Wellington Posterior of Deterministic Image
Classifiers [68.9065881270224]
Wellington Posteriorは、同じシーンで生成された可能性のあるデータに応答して得られるであろう結果の分布である。
We we explore the use of data augmentation, dropout, ensembling, single-view reconstruction and model linearization to compute a Wellington Posterior。
他にも、生成逆数ネットワーク、ニューラルレイディアンスフィールド、条件付き事前ネットワークなどの条件付き生成モデルの使用がある。
論文 参考訳(メタデータ) (2021-06-25T20:10:00Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
本稿では,Web画像を用いた深部FGモデルのトレーニングにおいて,ラベルノイズに対処するための再利用可能なサンプル選択と修正手法を提案する。
私たちのキーとなるアイデアは、再利用可能なサンプルの追加と修正を行い、それらをクリーンな例とともに活用してネットワークを更新することです。
論文 参考訳(メタデータ) (2020-08-06T02:07:21Z) - Set Based Stochastic Subsampling [85.5331107565578]
本稿では,2段階間ニューラルサブサンプリングモデルを提案する。
画像分類,画像再構成,機能再構築,少数ショット分類など,様々なタスクにおいて,低いサブサンプリング率で関連ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-25T07:36:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。