Best Practices for Responsible Machine Learning in Credit Scoring
- URL: http://arxiv.org/abs/2409.20536v1
- Date: Mon, 30 Sep 2024 17:39:38 GMT
- Title: Best Practices for Responsible Machine Learning in Credit Scoring
- Authors: Giovani Valdrighi, Athyrson M. Ribeiro, Jansen S. B. Pereira, Vitoria Guardieiro, Arthur Hendricks, Décio Miranda Filho, Juan David Nieto Garcia, Felipe F. Bocca, Thalita B. Veronese, Lucas Wanner, Marcos Medeiros Raimundo,
- Abstract summary: This tutorial paper performed a non-systematic literature review to guide best practices for developing responsible machine learning models in credit scoring.
We discuss definitions, metrics, and techniques for mitigating biases and ensuring equitable outcomes across different groups.
By adopting these best practices, financial institutions can harness the power of machine learning while upholding ethical and responsible lending practices.
- Score: 0.03984353141309896
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The widespread use of machine learning in credit scoring has brought significant advancements in risk assessment and decision-making. However, it has also raised concerns about potential biases, discrimination, and lack of transparency in these automated systems. This tutorial paper performed a non-systematic literature review to guide best practices for developing responsible machine learning models in credit scoring, focusing on fairness, reject inference, and explainability. We discuss definitions, metrics, and techniques for mitigating biases and ensuring equitable outcomes across different groups. Additionally, we address the issue of limited data representativeness by exploring reject inference methods that incorporate information from rejected loan applications. Finally, we emphasize the importance of transparency and explainability in credit models, discussing techniques that provide insights into the decision-making process and enable individuals to understand and potentially improve their creditworthiness. By adopting these best practices, financial institutions can harness the power of machine learning while upholding ethical and responsible lending practices.
Related papers
- Ensuring Equitable Financial Decisions: Leveraging Counterfactual Fairness and Deep Learning for Bias [0.0]
This research paper investigates advanced bias mitigation techniques, with a particular focus on counterfactual fairness in conjunction with data augmentation.
The study looks into how these integrated approaches can lessen gender bias in the financial industry, specifically in loan approval procedures.
arXiv Detail & Related papers (2024-08-27T14:28:06Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Algorithmic decision making methods for fair credit scoring [0.0]
We evaluate the effectiveness of 12 leading bias mitigation methods across 5 different fairness metrics.
Our research serves to bridge the gap between experimental machine learning and its practical applications in the finance industry.
arXiv Detail & Related papers (2022-09-16T13:24:25Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
The use of sophisticated statistical models that influence decisions in domains of high societal relevance is on the rise.
Many governments, institutions, and companies are reluctant to their adoption as their output is often difficult to explain in human-interpretable ways.
Recently, the academic literature has proposed a substantial amount of methods for providing interpretable explanations to machine learning models.
arXiv Detail & Related papers (2021-04-09T01:46:34Z) - Explaining Credit Risk Scoring through Feature Contribution Alignment
with Expert Risk Analysts [1.7778609937758323]
We focus on companies credit scoring and we benchmark different machine learning models.
The aim is to build a model to predict whether a company will experience financial problems in a given time horizon.
We bring light by providing an expert-aligned feature relevance score highlighting the disagreement between a credit risk expert and a model feature attribution explanation.
arXiv Detail & Related papers (2021-03-15T12:59:15Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z) - Explainable AI for Interpretable Credit Scoring [0.8379286663107844]
Credit scoring helps financial experts make better decisions regarding whether or not to accept a loan application.
Regulations have added the need for model interpretability to ensure that algorithmic decisions are understandable coherent.
We present a credit scoring model that is both accurate and interpretable.
arXiv Detail & Related papers (2020-12-03T18:44:03Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.