論文の概要: Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
- arxiv url: http://arxiv.org/abs/2412.20367v2
- Date: Thu, 02 Jan 2025 09:43:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 14:35:50.470331
- Title: Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
- Title(参考訳): コード生成における強化学習によるLLMの強化:調査
- Authors: Junqiao Wang, Zeng Zhang, Yangfan He, Yuyang Song, Tianyu Shi, Yuchen Li, Hengyuan Xu, Kunyu Wu, Guangwu Qian, Qiuwu Chen, Lewei He,
- Abstract要約: コード生成と最適化のための重要なテクニックとして強化学習(RL)が登場した。
本稿では,コード最適化と生成におけるRLの適用について,系統的な調査を行った。
- 参考スコア(独自算出の注目度): 7.7582469015328295
- License:
- Abstract: With the rapid evolution of large language models (LLM), reinforcement learning (RL) has emerged as a pivotal technique for code generation and optimization in various domains. This paper presents a systematic survey of the application of RL in code optimization and generation, highlighting its role in enhancing compiler optimization, resource allocation, and the development of frameworks and tools. Subsequent sections first delve into the intricate processes of compiler optimization, where RL algorithms are leveraged to improve efficiency and resource utilization. The discussion then progresses to the function of RL in resource allocation, emphasizing register allocation and system optimization. We also explore the burgeoning role of frameworks and tools in code generation, examining how RL can be integrated to bolster their capabilities. This survey aims to serve as a comprehensive resource for researchers and practitioners interested in harnessing the power of RL to advance code generation and optimization techniques.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進化に伴い、様々な領域におけるコード生成と最適化の重要な手法として強化学習(RL)が出現している。
本稿では、コード最適化と生成におけるRLの適用について体系的な調査を行い、コンパイラ最適化の強化、リソース割り当て、フレームワークやツールの開発におけるその役割を明らかにする。
その後のセクションでは、RLアルゴリズムが効率と資源利用を改善するために利用される、コンパイラ最適化の複雑なプロセスについて調べる。
この議論は、リソース割り当てにおけるRLの機能に進み、レジスタ割り当てとシステムの最適化を強調している。
また、コード生成におけるフレームワークやツールの急成長する役割についても検討し、RLがそれらの機能を強化するためにどのように統合できるかを調べます。
この調査は、RLのパワーを活用してコード生成と最適化技術を向上することに関心のある研究者や実践者のための総合的なリソースとして機能することを目的としている。
関連論文リスト
- A Reinforcement Learning Environment for Automatic Code Optimization in the MLIR Compiler [0.10923877073891444]
本稿では,MLIRコンパイラ研究の促進を目的とした,MLIRコンパイラの最初のRL環境について紹介する。
また、より単純なアクション部分空間の積として作用空間の新たな定式化を提案し、より効率的かつ効率的な最適化を可能にした。
論文 参考訳(メタデータ) (2024-09-17T10:49:45Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
深部強化学習(DRL)は様々な分野に広く適用されており、優れた成果を上げている。
DRLは、サンプル効率の低下や一般化の低さなど、いくつかの制限に直面している。
本稿では、これらの問題に対処し、DRLアルゴリズムの性能を向上させるために、生成AI(GAI)を活用する方法について述べる。
論文 参考訳(メタデータ) (2024-05-31T01:25:40Z) - Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
大規模言語モデル(LLM)は、マルチタスク学習、サンプル効率、高レベルのタスク計画といった側面において強化学習(RL)を強化するための有望な道として出現する。
本稿では,情報処理装置,報酬設計装置,意思決定装置,ジェネレータの4つの役割を含む,RLにおけるLLMの機能を体系的に分類する構造的分類法を提案する。
論文 参考訳(メタデータ) (2024-03-30T08:28:08Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
本研究は, 深層強化学習(DRL)の可能性を活用した新しい枠組みを提案する。
DRLエージェントをRAYプラットフォームに統合することにより、RAYのリソースを効率的に利用してシステム適応性と制御を改善する新しいフレームワークであるRLlib-IMPALAの開発が容易になる。
論文 参考訳(メタデータ) (2024-02-24T23:25:35Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task
Environments [0.3867363075280544]
強化学習(RL)研究において、シミュレーションはアルゴリズム間のベンチマークを可能にする。
本稿では,ロボット応用のためのフレームワークであるKarolosを紹介する。
コードはオープンソースでGitHubに公開されており、ロボット工学におけるRLアプリケーションの研究を促進することを目的としている。
論文 参考訳(メタデータ) (2022-12-01T23:14:02Z) - Is Reinforcement Learning (Not) for Natural Language Processing?:
Benchmarks, Baselines, and Building Blocks for Natural Language Policy
Optimization [73.74371798168642]
我々は、強化学習による言語生成を最適化するためのオープンソースのモジュールライブラリRL4LMを紹介する。
次に、ターゲット文字列ではなく、報酬関数によって教師される6つの言語生成タスクのセットであるGRUEベンチマークを示す。
最後に,言語生成における動作空間を効果的に削減するNLPOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-03T21:38:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。