論文の概要: Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
- arxiv url: http://arxiv.org/abs/2412.20367v4
- Date: Wed, 11 Jun 2025 04:18:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-12 23:41:16.602292
- Title: Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
- Title(参考訳): コード生成における強化学習によるLLMの強化:調査
- Authors: Junqiao Wang, Zeng Zhang, Yangfan He, Zihao Zhang, Yuyang Song, Tianyu Shi, Yuchen Li, Hengyuan Xu, Kunyu Wu, Xin Yi, Zhongwei Wan, Xinhang Yuan, Kuan Lu, Menghao Huo, Tang Jingqun, Guangwu Qian, Keqin Li, Qiuwu Chen, Lewei He,
- Abstract要約: 大規模言語モデル(LLM)の強化のための強力なパラダイムとして強化学習(RL)が登場した。
この調査は、コード開発ライフサイクル全体にわたってRL駆動のテクニックを体系的にレビューする。
- 参考スコア(独自算出の注目度): 15.37013454932678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing large language models (LLMs) in code generation and optimization. This survey systematically reviews RL-driven techniques across the code development lifecycle, from compiler-level optimizations and resource allocation strategies to end-to-end code synthesis frameworks. We first examine classical and modern RL algorithms -- spanning policy gradients, actor-critic methods, human-feedback alignment, and preference-based optimization -- and their adaptations to the unique challenges of code generation, such as sparse and delayed rewards. Next, we analyze key benchmarks, datasets, and evaluation metrics that drive progress in RL-augmented Code LLMs. Finally, we identify open problems, including the need for richer feedback sources, support for low-level and domain-specific languages, and methods to reduce computational overhead. By consolidating current insights and outlining future directions, this work aims to guide researchers and practitioners in leveraging RL to produce more robust, efficient, and human-aligned code generation systems.
- Abstract(参考訳): 強化学習(RL)は、コード生成と最適化において、大規模言語モデル(LLM)を強化するための強力なパラダイムとして登場した。
この調査は、コンパイラレベルの最適化やリソース割り当て戦略からエンドツーエンドのコード合成フレームワークまで、コード開発ライフサイクル全体にわたってRL駆動のテクニックを体系的にレビューする。
まず、古典的および近代的なRLアルゴリズム(ポリシー勾配、アクタ批判的手法、ヒューマンフィードバックアライメント、嗜好に基づく最適化)と、スパースや遅延報酬といったコード生成のユニークな課題への適応について検討する。
次に、RL拡張コードLLMの進捗を駆動する主要なベンチマーク、データセット、評価メトリクスを分析します。
最後に、よりリッチなフィードバックソースの必要性、低レベル言語とドメイン固有言語のサポート、計算オーバーヘッドを低減する方法など、オープンな問題を特定する。
この研究は、現在の洞察を統合し、将来の方向性を概説することで、研究者や実践者がRLを活用してより堅牢で効率的で、人間に整合したコード生成システムを作り出すことをガイドすることを目的としています。
関連論文リスト
- SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks [110.20297293596005]
大規模言語モデル(LLM)エージェントは、実世界のタスクでマルチターンインタラクションを実行する必要がある。
LLMエージェントを最適化するための既存のマルチターンRLアルゴリズムは、LLMの一般化能力を活用しながら、複数回にわたって効果的なクレジット割り当てを行うことができない。
本稿では,新たなRLアルゴリズムであるSWEET-RLを提案する。
我々の実験は、SWEET-RLがコルベンチにおける成功率と勝利率を、他の最先端マルチターンRLアルゴリズムと比較して6%向上することを示した。
論文 参考訳(メタデータ) (2025-03-19T17:55:08Z) - Reinforcement Learning Enhanced LLMs: A Survey [45.57586245741664]
我々はRL強化大言語モデル(LLM)に関する最新の知識の体系的なレビューを行う。
具体的には、RLの基礎を詳述し、(2)人気のRL強化LLMを導入し、(3)広く使われている報酬モデルに基づくRL技術であるReinforcement Learning from Human Feedback(RLHF)とReinforcement Learning from AI Feedback(RLAIF)についてレビューする。
論文 参考訳(メタデータ) (2024-12-05T16:10:42Z) - A Reinforcement Learning Environment for Automatic Code Optimization in the MLIR Compiler [0.10923877073891444]
本稿では,MLIRコンパイラ研究の促進を目的とした,MLIRコンパイラの最初のRL環境について紹介する。
また、より単純なアクション部分空間の積として作用空間の新たな定式化を提案し、より効率的かつ効率的な最適化を可能にした。
論文 参考訳(メタデータ) (2024-09-17T10:49:45Z) - Generative AI for Deep Reinforcement Learning: Framework, Analysis, and Use Cases [60.30995339585003]
深部強化学習(DRL)は様々な分野に広く適用されており、優れた成果を上げている。
DRLは、サンプル効率の低下や一般化の低さなど、いくつかの制限に直面している。
本稿では、これらの問題に対処し、DRLアルゴリズムの性能を向上させるために、生成AI(GAI)を活用する方法について述べる。
論文 参考訳(メタデータ) (2024-05-31T01:25:40Z) - Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods [18.771658054884693]
大規模言語モデル(LLM)は、マルチタスク学習、サンプル効率、高レベルのタスク計画といった側面において強化学習(RL)を強化するための有望な道として出現する。
本稿では,情報処理装置,報酬設計装置,意思決定装置,ジェネレータの4つの役割を含む,RLにおけるLLMの機能を体系的に分類する構造的分類法を提案する。
論文 参考訳(メタデータ) (2024-03-30T08:28:08Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
本研究は, 深層強化学習(DRL)の可能性を活用した新しい枠組みを提案する。
DRLエージェントをRAYプラットフォームに統合することにより、RAYのリソースを効率的に利用してシステム適応性と制御を改善する新しいフレームワークであるRLlib-IMPALAの開発が容易になる。
論文 参考訳(メタデータ) (2024-02-24T23:25:35Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Reinforcement Learning-assisted Evolutionary Algorithm: A Survey and
Research Opportunities [63.258517066104446]
進化的アルゴリズムの構成要素として統合された強化学習は,近年,優れた性能を示している。
本稿では,RL-EA 統合手法,RL-EA が採用する RL-EA 支援戦略,および既存文献による適用について論じる。
RL-EAセクションの適用例では、RL-EAのいくつかのベンチマークおよび様々な公開データセットにおける優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-25T15:06:05Z) - Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task
Environments [0.3867363075280544]
強化学習(RL)研究において、シミュレーションはアルゴリズム間のベンチマークを可能にする。
本稿では,ロボット応用のためのフレームワークであるKarolosを紹介する。
コードはオープンソースでGitHubに公開されており、ロボット工学におけるRLアプリケーションの研究を促進することを目的としている。
論文 参考訳(メタデータ) (2022-12-01T23:14:02Z) - FORLORN: A Framework for Comparing Offline Methods and Reinforcement
Learning for Optimization of RAN Parameters [0.0]
本稿では,ネットワーク環境におけるRLエージェントの性能をns-3でシミュレートする新しいフレームワークを提案する。
このフレームワークでは、ドメイン固有の知識を持たないRLエージェントが、静的シナリオにおけるオフライン最適化に適合するように、Radio Access Network(RAN)パラメータを効率的に調整する方法を学習できることを実証する。
論文 参考訳(メタデータ) (2022-09-08T12:58:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。