論文の概要: Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
- arxiv url: http://arxiv.org/abs/2412.20375v1
- Date: Sun, 29 Dec 2024 06:36:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:07:20.352906
- Title: Scalable Bayesian Optimization via Focalized Sparse Gaussian Processes
- Title(参考訳): 疎化ガウス過程によるスケーラブルベイズ最適化
- Authors: Yunyue Wei, Vincent Zhuang, Saraswati Soedarmadji, Yanan Sui,
- Abstract要約: 我々は,より効率的な表現力を検索空間の関連領域に割り当てることのできる,疎いGPを用いたベイズ最適化アルゴリズムについて論じる。
本研究では,FocalBOが大量のオフラインおよびオンラインデータを効率よく活用し,ロボット形態学設計における最先端性能と585次元筋骨格系を制御できることを示す。
- 参考スコア(独自算出の注目度): 8.40647440727154
- License:
- Abstract: Bayesian optimization is an effective technique for black-box optimization, but its applicability is typically limited to low-dimensional and small-budget problems due to the cubic complexity of computing the Gaussian process (GP) surrogate. While various approximate GP models have been employed to scale Bayesian optimization to larger sample sizes, most suffer from overly-smooth estimation and focus primarily on problems that allow for large online samples. In this work, we argue that Bayesian optimization algorithms with sparse GPs can more efficiently allocate their representational power to relevant regions of the search space. To achieve this, we propose focalized GP, which leverages a novel variational loss function to achieve stronger local prediction, as well as FocalBO, which hierarchically optimizes the focalized GP acquisition function over progressively smaller search spaces. Experimental results demonstrate that FocalBO can efficiently leverage large amounts of offline and online data to achieve state-of-the-art performance on robot morphology design and to control a 585-dimensional musculoskeletal system.
- Abstract(参考訳): ベイズ最適化はブラックボックス最適化の有効な手法であるが、その適用性は通常、ガウス過程(GP)サロゲートの計算の複雑さにより、低次元および小予算の問題に限られる。
様々な近似GPモデルはベイズ最適化をより大きなサンプルサイズに拡張するために使われてきたが、そのほとんどは過度に滑らかな推定に悩まされ、主に大規模なオンラインサンプルを可能にする問題に焦点を当てている。
本研究では,より効率的な表現力を探索空間の関連領域に割り当てることのできる,疎いGPを用いたベイズ最適化アルゴリズムを提案する。
これを実現するために,新たな変分損失関数を活用してより強力な局所予測を実現するFocalBOや,より小さな探索空間上での局所的GP獲得関数を階層的に最適化するFocalBOを提案する。
実験により,FocalBOは大量のオフラインおよびオンラインデータを効率よく活用し,ロボット形態学設計における最先端性能と585次元筋骨格系を制御できることが確認された。
関連論文リスト
- Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Accelerating genetic optimization of nonlinear model predictive control
by learning optimal search space size [0.8057006406834467]
本稿では,最適空間サイズを学習することで,NMPCの最適化を高速化する手法を提案する。
提案手法を2つの非線形システムで比較し,他の2つのNMPC手法と比較した。
論文 参考訳(メタデータ) (2023-05-14T08:10:49Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
本稿では,下降の動的過程を利用した新しいスワム・スワムベースのフレームワークを提案する。
このアプローチの最大の利点は、降下を決定する前に現在の状態についてより深い探索を行うことである。
論文 参考訳(メタデータ) (2022-11-26T09:06:15Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
追加データをクエリすることで制限をサイドステップするMBOアルゴリズムであるJUMBOを提案する。
GP-UCBに類似した条件下では, 応答が得られないことを示す。
実世界の2つの最適化問題に対する既存手法に対する性能改善を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T05:03:38Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Scalable Constrained Bayesian Optimization [10.820024633762596]
ブラックボックス制約下での高次元ブラックボックス関数のグローバルな最適化は、機械学習、制御、科学コミュニティにおける普及的なタスクである。
本稿では,上記の課題を克服し,現状を推し進めるスケーラブルな制約付きベイズ最適化(SCBO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-20T01:48:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。