Sensitivity-Aware Amortized Bayesian Inference
- URL: http://arxiv.org/abs/2310.11122v6
- Date: Wed, 28 Aug 2024 12:33:52 GMT
- Title: Sensitivity-Aware Amortized Bayesian Inference
- Authors: Lasse Elsemüller, Hans Olischläger, Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, Stefan T. Radev,
- Abstract summary: Sensitivity analyses reveal the influence of various modeling choices on the outcomes of statistical analyses.
We propose sensitivity-aware amortized Bayesian inference (SA-ABI), a multifaceted approach to integrate sensitivity analyses into simulation-based inference with neural networks.
We demonstrate the effectiveness of our method in applied modeling problems, ranging from disease outbreak dynamics and global warming thresholds to human decision-making.
- Score: 8.753065246797561
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Sensitivity analyses reveal the influence of various modeling choices on the outcomes of statistical analyses. While theoretically appealing, they are overwhelmingly inefficient for complex Bayesian models. In this work, we propose sensitivity-aware amortized Bayesian inference (SA-ABI), a multifaceted approach to efficiently integrate sensitivity analyses into simulation-based inference with neural networks. First, we utilize weight sharing to encode the structural similarities between alternative likelihood and prior specifications in the training process with minimal computational overhead. Second, we leverage the rapid inference of neural networks to assess sensitivity to data perturbations and preprocessing steps. In contrast to most other Bayesian approaches, both steps circumvent the costly bottleneck of refitting the model for each choice of likelihood, prior, or data set. Finally, we propose to use deep ensembles to detect sensitivity arising from unreliable approximation (e.g., due to model misspecification). We demonstrate the effectiveness of our method in applied modeling problems, ranging from disease outbreak dynamics and global warming thresholds to human decision-making. Our results support sensitivity-aware inference as a default choice for amortized Bayesian workflows, automatically providing modelers with insights into otherwise hidden dimensions.
Related papers
- Inverse decision-making using neural amortized Bayesian actors [19.128377007314317]
We amortize the Bayesian actor using a neural network trained on a wide range of different parameter settings in an unsupervised fashion.
We show that the inferred posterior distributions are in close alignment with those obtained using analytical solutions where they exist.
We then show that identifiability problems between priors and costs can arise in more complex cost functions.
arXiv Detail & Related papers (2024-09-04T10:31:35Z) - A Neural Framework for Generalized Causal Sensitivity Analysis [78.71545648682705]
We propose NeuralCSA, a neural framework for causal sensitivity analysis.
We provide theoretical guarantees that NeuralCSA is able to infer valid bounds on the causal query of interest.
arXiv Detail & Related papers (2023-11-27T17:40:02Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
We show that variational Bayesian methods can yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models.
We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.
arXiv Detail & Related papers (2021-07-08T03:40:18Z) - Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
Kernel Learning [14.03923026690186]
We propose an uncertainty-aware deep kernel learning model which permits the estimation of the uncertainty in the prediction.
In most cases, the proposed model shows better performance compared to common architectures.
Our model can also be used to detect challenging and controversial test samples.
arXiv Detail & Related papers (2021-06-01T17:09:47Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Ramifications of Approximate Posterior Inference for Bayesian Deep
Learning in Adversarial and Out-of-Distribution Settings [7.476901945542385]
We show that Bayesian deep learning models on certain occasions marginally outperform conventional neural networks.
Preliminary investigations indicate the potential inherent role of bias due to choices of initialisation, architecture or activation functions.
arXiv Detail & Related papers (2020-09-03T16:58:15Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z) - Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling [3.077929914199468]
We show that modifying the sampling distributions for dropout layers in neural networks improves the quality of uncertainty estimation.
Our main idea consists of two main steps: computing data-driven correlations between neurons and generating samples, which include maximally diverse neurons.
arXiv Detail & Related papers (2020-03-06T15:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.