HALLUCINOGEN: A Benchmark for Evaluating Object Hallucination in Large Visual-Language Models
- URL: http://arxiv.org/abs/2412.20622v1
- Date: Sun, 29 Dec 2024 23:56:01 GMT
- Title: HALLUCINOGEN: A Benchmark for Evaluating Object Hallucination in Large Visual-Language Models
- Authors: Ashish Seth, Dinesh Manocha, Chirag Agarwal,
- Abstract summary: Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in performing complex multimodal tasks.
We propose HALLUCINOGEN, a novel visual question answering (VQA) object hallucination attack benchmark.
We extend our benchmark to high-stakes medical applications and introduce MED-HALLUCINOGEN, hallucination attacks tailored to the biomedical domain.
- Score: 57.58426038241812
- License:
- Abstract: Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in performing complex multimodal tasks. However, they are still plagued by object hallucination: the misidentification or misclassification of objects present in images. To this end, we propose HALLUCINOGEN, a novel visual question answering (VQA) object hallucination attack benchmark that utilizes diverse contextual reasoning prompts to evaluate object hallucination in state-of-the-art LVLMs. We design a series of contextual reasoning hallucination prompts to evaluate LVLMs' ability to accurately identify objects in a target image while asking them to perform diverse visual-language tasks such as identifying, locating or performing visual reasoning around specific objects. Further, we extend our benchmark to high-stakes medical applications and introduce MED-HALLUCINOGEN, hallucination attacks tailored to the biomedical domain, and evaluate the hallucination performance of LVLMs on medical images, a critical area where precision is crucial. Finally, we conduct extensive evaluations of eight LVLMs and two hallucination mitigation strategies across multiple datasets to show that current generic and medical LVLMs remain susceptible to hallucination attacks.
Related papers
- MedVH: Towards Systematic Evaluation of Hallucination for Large Vision Language Models in the Medical Context [21.562034852024272]
Large Vision Language Models (LVLMs) have recently achieved superior performance in various tasks on natural image and text data.
Despite their advancements, there has been scant research on the robustness of these models against hallucination when fine-tuned on smaller datasets.
We introduce a new benchmark dataset, the Medical Visual Hallucination Test (MedVH), to evaluate the hallucination of domain-specific LVLMs.
arXiv Detail & Related papers (2024-07-03T00:59:03Z) - Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models? [53.89380284760555]
Large vision-language models (LVLMs) produce captions that mention concepts that cannot be found in the image.
These hallucinations erode the trustworthiness of LVLMs and are arguably among the main obstacles to their ubiquitous adoption.
Recent work suggests that addition of grounding objectives -- those that explicitly align image regions or objects to text spans -- reduces the amount of LVLM hallucination.
arXiv Detail & Related papers (2024-06-20T16:56:11Z) - Hal-Eval: A Universal and Fine-grained Hallucination Evaluation Framework for Large Vision Language Models [35.45859414670449]
We introduce a refined taxonomy of hallucinations, featuring a new category: Event Hallucination.
We then utilize advanced LLMs to generate and filter fine grained hallucinatory data consisting of various types of hallucinations.
The proposed benchmark distinctively assesses LVLMs ability to tackle a broad spectrum of hallucinations.
arXiv Detail & Related papers (2024-02-24T05:14:52Z) - Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models [52.957842999317506]
Object hallucination refers to the phenomenon that the LVLMs claim non-existent objects in the image.
We propose a Logical Closed Loop-based framework for Object Hallucination Detection and Mitigation, namely LogicCheckGPT.
As a plug-and-play method, it can be seamlessly applied to all existing LVLMs.
arXiv Detail & Related papers (2024-02-18T15:28:39Z) - A Survey on Hallucination in Large Vision-Language Models [18.540878498840435]
Large Vision-Language Models (LVLMs) have attracted growing attention within the AI landscape for its practical implementation potential.
However, hallucination'', or more specifically, the misalignment between factual visual content and corresponding textual generation, poses a significant challenge of utilizing LVLMs.
We dissect LVLM-related hallucinations in an attempt to establish an overview and facilitate future mitigation.
arXiv Detail & Related papers (2024-02-01T00:33:21Z) - Analyzing and Mitigating Object Hallucination in Large Vision-Language Models [110.12460299261531]
Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages.
LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images.
We propose a powerful algorithm, LVLM Hallucination Revisor (LURE), to rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions.
arXiv Detail & Related papers (2023-10-01T18:10:53Z) - Evaluation and Analysis of Hallucination in Large Vision-Language Models [49.19829480199372]
Large Vision-Language Models (LVLMs) have recently achieved remarkable success.
LVLMs are still plagued by the hallucination problem.
Hallucination refers to the information of LVLMs' responses that does not exist in the visual input.
arXiv Detail & Related papers (2023-08-29T08:51:24Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
This work presents the first systematic study on object hallucination of large vision-language models (LVLMs)
We find that LVLMs tend to generate objects that are inconsistent with the target images in the descriptions.
We propose a polling-based query method called POPE to evaluate the object hallucination.
arXiv Detail & Related papers (2023-05-17T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.