論文の概要: Environmental and Economic Impact of I/O Device Obsolescence
- arxiv url: http://arxiv.org/abs/2412.20655v1
- Date: Mon, 30 Dec 2024 02:20:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-01 14:38:25.650378
- Title: Environmental and Economic Impact of I/O Device Obsolescence
- Title(参考訳): I/Oデバイス・オブゾルミネッセンスの環境・経済への影響
- Authors: Patrick Gould, Guanqun Song, Ting Zhu,
- Abstract要約: この陳腐化は、新しいソフトウェア/ハードウェア世代が、そうでなければ機能デバイスを使用不能にしているためかもしれない。
e-wasteが生み出す経済的・環境的影響を簡潔に分析した。
- 参考スコア(独自算出の注目度): 4.424739166856966
- License:
- Abstract: This paper analyzes the proportion of Input/output devices made obsolete by changes in technology generations. This obsolescence may be by new software/hardware generations rendering otherwise functional devices unusable. Concluding with brief analysis on the economic and environmental impacts of the e-waste produced.
- Abstract(参考訳): 本稿では,技術世代の変化によって時代遅れになった入力/出力デバイスの割合を分析する。
この陳腐化は、新しいソフトウェア/ハードウェア世代が、そうでなければ機能デバイスを使用不能にしているためかもしれない。
e-wasteが生み出す経済的・環境的影響を簡潔に分析した。
関連論文リスト
- Representation Learning of Complex Assemblies, An Effort to Improve Corporate Scope 3 Emissions Calculation [0.276240219662896]
政府、企業、市民も同様に、製造品やサービスの提供による気候への影響を正確に評価する必要がある。
プロセスライフサイクル分析(pLCA)は、生産、使用、廃棄の気候への影響を評価するために用いられる。
代用部品を特定するための半教師付き学習ベースフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:21:31Z) - Measuring the Recyclability of Electronic Components to Assist Automatic Disassembly and Sorting Waste Printed Circuit Boards [4.0998481751764]
本稿では, 廃プリント基板(WPCB)からの廃電子部品(WEC)のリサイクル性の測定に, 数学的革新モデルを用いて着目する。
この革新的なアプローチは、WECのリサイクルとリサイクルの難しさを評価し、分解とソートを改善するAIモデルを統合する。
論文 参考訳(メタデータ) (2024-06-24T12:33:56Z) - On The Fairness Impacts of Hardware Selection in Machine Learning [47.64314140984432]
本稿では,ハードウェアがモデル性能と公平性の微妙なバランスに与える影響について検討する。
ハードウェアの選択が既存の格差を悪化させる可能性を示し、これらの相違は、異なる階層群間での勾配流と損失面の変化に起因することを示した。
論文 参考訳(メタデータ) (2023-12-06T20:24:17Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Reverse Logistics Network Design to Estimate the Economic and
Environmental Impacts of Take-back Legislation: A Case Study for E-waste
Management System in Washington State [3.7406100634766646]
システム最適モデルにおける電子廃棄物のリサイクルと再製造に関連する逆ロジスティクス網について検討する。
我々は,ロジスティクスネットワークを最適モデルの2つの異なる部分に分割し,ユーザの視点から最適解を導出する。
提案されたモデルを実証的な例に実装することは、テイクバック法の経済的および環境的影響を見積もることができることを示す。
論文 参考訳(メタデータ) (2023-01-24T02:50:09Z) - Optimization paper production through digitalization by developing an
assistance system for machine operators including quality forecast: a concept [50.591267188664666]
廃紙からの紙の製造は、特にエネルギー消費の観点からも、依然として非常に資源集約的な課題である。
我々は,その利用方法の欠如を特定し,操作支援システムと最先端の機械学習技術を用いた概念の実装を行った。
我々の主な目的は、利用可能なデータを活用するマシンオペレーターに状況に応じた知識を提供することである。
論文 参考訳(メタデータ) (2022-06-23T09:54:35Z) - Machine Learning and Artificial Intelligence in Circular Economy: A
Bibliometric Analysis and Systematic Literature Review [0.0]
循環経済(CE)は、設計段階で材料から最も高い価値を出し、再利用、リサイクル、再製造によって製品ライフサイクルのループを完成させることを目的としている。
本研究では,CEにおける応用AI技術の採用と統合について検討する。
論文 参考訳(メタデータ) (2022-04-01T07:05:13Z) - Classification of PS and ABS Black Plastics for WEEE Recycling
Applications [63.942632088208505]
本研究の目的は,ポリスチレン (PS) 型とアクリロニトリルブタジエン (ABS) 型の黒色プラスチックを用いて,異なる種類のプラスチックを分類できるシステムを作ることである。
畳み込みニューラルネットワークのテストと再訓練が行われ、95%の精度が得られた。
別個のテストセットを使用して平均精度は86.6%まで低下するが、結果を見てみるとABS型が100%正確に分類されていることが分かるため、すべてのエラーを蓄積するPS型である。
論文 参考訳(メタデータ) (2021-10-20T12:47:18Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
Intelligent IoT Environment(iIoTe)は、半自律IoTアプリケーションを協調実行可能な異種デバイスで構成されている。
本稿では,これらの技術の現状を概観し,その機能と性能,特にリソース,レイテンシ,プライバシ,エネルギー消費のトレードオフに注目した。
論文 参考訳(メタデータ) (2021-10-04T19:41:42Z) - Assessing the embodied carbon footprint of IoT edge devices with a
bottom-up life-cycle approach [1.7042264000899534]
我々は,IoTエッジデバイスのクレードル・トゥ・ゲートカーボンフットプリントを評価するためのハードウェアプロファイルに基づくフレームワークを提案する。
マクロ分析により,世界規模のIoTエッジデバイスの生産によって引き起こされる絶対炭素フットプリントを推定する。
配置シナリオによっては、2027年には22から522MtCO2-eq/年となる。
論文 参考訳(メタデータ) (2021-05-05T14:29:21Z) - Predictive Maintenance for Edge-Based Sensor Networks: A Deep
Reinforcement Learning Approach [68.40429597811071]
未計画の設備停止のリスクは、収益発生資産の予測保守によって最小化することができる。
機器に基づくセンサネットワークのコンテキストから予測機器のメンテナンスを行うために,モデルフリーのDeep Reinforcement Learningアルゴリズムを提案する。
従来のブラックボックス回帰モデルとは異なり、提案アルゴリズムは最適なメンテナンスポリシーを自己学習し、各機器に対して実行可能なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2020-07-07T10:00:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。