Overcoming Class Imbalance: Unified GNN Learning with Structural and Semantic Connectivity Representations
- URL: http://arxiv.org/abs/2412.20656v1
- Date: Mon, 30 Dec 2024 02:20:40 GMT
- Title: Overcoming Class Imbalance: Unified GNN Learning with Structural and Semantic Connectivity Representations
- Authors: Abdullah Alchihabi, Hao Yan, Yuhong Guo,
- Abstract summary: Class imbalance is pervasive in real-world graph datasets, where the majority of annotated nodes belong to a small set of classes.
We introduce a novel Unified Graph Neural Network Learning (Uni-GNN) framework to tackle class-imbalanced node classification.
- Score: 29.361821020752505
- License:
- Abstract: Class imbalance is pervasive in real-world graph datasets, where the majority of annotated nodes belong to a small set of classes (majority classes), leaving many other classes (minority classes) with only a handful of labeled nodes. Graph Neural Networks (GNNs) suffer from significant performance degradation in the presence of class imbalance, exhibiting bias towards majority classes and struggling to generalize effectively on minority classes. This limitation stems, in part, from the message passing process, leading GNNs to overfit to the limited neighborhood of annotated nodes from minority classes and impeding the propagation of discriminative information throughout the entire graph. In this paper, we introduce a novel Unified Graph Neural Network Learning (Uni-GNN) framework to tackle class-imbalanced node classification. The proposed framework seamlessly integrates both structural and semantic connectivity representations through semantic and structural node encoders. By combining these connectivity types, Uni-GNN extends the propagation of node embeddings beyond immediate neighbors, encompassing non-adjacent structural nodes and semantically similar nodes, enabling efficient diffusion of discriminative information throughout the graph. Moreover, to harness the potential of unlabeled nodes within the graph, we employ a balanced pseudo-label generation mechanism that augments the pool of available labeled nodes from minority classes in the training set. Experimental results underscore the superior performance of our proposed Uni-GNN framework compared to state-of-the-art class-imbalanced graph learning baselines across multiple benchmark datasets.
Related papers
- Federated Graph Semantic and Structural Learning [54.97668931176513]
This paper reveals that local client distortion is brought by both node-level semantics and graph-level structure.
We postulate that a well-structural graph neural network possesses similarity for neighbors due to the inherent adjacency relationships.
We transform the adjacency relationships into the similarity distribution and leverage the global model to distill the relation knowledge into the local model.
arXiv Detail & Related papers (2024-06-27T07:08:28Z) - Heterophily-Based Graph Neural Network for Imbalanced Classification [19.51668009720269]
We introduce a unique approach that tackles imbalanced classification on graphs by considering graph heterophily.
We propose Fast Im-GBK, which integrates an imbalance classification strategy with heterophily-aware GNNs.
Our experiments on real-world graphs demonstrate our model's superiority in classification performance and efficiency for node classification tasks.
arXiv Detail & Related papers (2023-10-12T21:19:47Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Semantic-aware Node Synthesis for Imbalanced Heterogeneous Information
Networks [51.55932524129814]
We present the first method for the semantic imbalance problem in imbalanced HINs named Semantic-aware Node Synthesis (SNS)
SNS adaptively selects the heterogeneous neighbor nodes and augments the network with synthetic nodes while preserving the minority semantics.
We also introduce two regularization approaches for HGNNs that constrain the representation of synthetic nodes from both semantic and class perspectives.
arXiv Detail & Related papers (2023-02-27T00:21:43Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification.
In this work, we reveal the vulnerability of GNN to the imbalance of node labels.
We propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules.
arXiv Detail & Related papers (2022-02-05T10:46:11Z) - Distance-wise Prototypical Graph Neural Network in Node Imbalance
Classification [9.755229198654922]
We propose a novel Distance-wise Prototypical Graph Neural Network (DPGNN) for imbalanced graph data.
The proposed DPGNN almost always significantly outperforms all other baselines, which demonstrates its effectiveness in imbalanced node classification.
arXiv Detail & Related papers (2021-10-22T19:43:15Z) - ImGAGN:Imbalanced Network Embedding via Generative Adversarial Graph
Networks [19.45752945234785]
Imbalanced classification on graphs is ubiquitous yet challenging in many real-world applications, such as fraudulent node detection.
We present a generative adversarial graph network model, called ImGAGN, to address the imbalanced classification problem on graphs.
We show that the proposed method ImGAGN outperforms state-of-the-art algorithms for semi-supervised imbalanced node classification task.
arXiv Detail & Related papers (2021-06-05T06:56:37Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - A Collective Learning Framework to Boost GNN Expressiveness [25.394456460032625]
We consider the task of inductive node classification using Graph Neural Networks (GNNs) in supervised and semi-supervised settings.
We propose a general collective learning approach to increase the representation power of any existing GNN.
We evaluate performance on five real-world network datasets and demonstrate consistent, significant improvement in node classification accuracy.
arXiv Detail & Related papers (2020-03-26T22:07:28Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.