Federated Graph Semantic and Structural Learning
- URL: http://arxiv.org/abs/2406.18937v2
- Date: Sat, 29 Jun 2024 18:17:40 GMT
- Title: Federated Graph Semantic and Structural Learning
- Authors: Wenke Huang, Guancheng Wan, Mang Ye, Bo Du,
- Abstract summary: This paper reveals that local client distortion is brought by both node-level semantics and graph-level structure.
We postulate that a well-structural graph neural network possesses similarity for neighbors due to the inherent adjacency relationships.
We transform the adjacency relationships into the similarity distribution and leverage the global model to distill the relation knowledge into the local model.
- Score: 54.97668931176513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated graph learning collaboratively learns a global graph neural network with distributed graphs, where the non-independent and identically distributed property is one of the major challenges. Most relative arts focus on traditional distributed tasks like images and voices, incapable of graph structures. This paper firstly reveals that local client distortion is brought by both node-level semantics and graph-level structure. First, for node-level semantics, we find that contrasting nodes from distinct classes is beneficial to provide a well-performing discrimination. We pull the local node towards the global node of the same class and push it away from the global node of different classes. Second, we postulate that a well-structural graph neural network possesses similarity for neighbors due to the inherent adjacency relationships. However, aligning each node with adjacent nodes hinders discrimination due to the potential class inconsistency. We transform the adjacency relationships into the similarity distribution and leverage the global model to distill the relation knowledge into the local model, which preserves the structural information and discriminability of the local model. Empirical results on three graph datasets manifest the superiority of the proposed method over its counterparts.
Related papers
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Strong Transitivity Relations and Graph Neural Networks [1.19658449368018]
Local neighborhoods play a crucial role in embedding generation in graph-based learning.
We introduce Transitivity Graph Neural Network (TransGNN), which more than local node similarities.
We evaluate our model over several real-world datasets and showed that it considerably improves the performance of several well-known GNN models.
arXiv Detail & Related papers (2024-01-01T13:53:50Z) - Contrastive Representation Learning Based on Multiple Node-centered
Subgraphs [11.416941835869649]
A single node intuitively has multiple node-centered subgraphs from the whole graph.
We propose a multiple node-centered subgraphs contrastive representation learning method to learn node representation on graphs in a self-supervised way.
arXiv Detail & Related papers (2023-08-31T04:04:09Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification.
In this work, we reveal the vulnerability of GNN to the imbalance of node labels.
We propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules.
arXiv Detail & Related papers (2022-02-05T10:46:11Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Node-wise Localization of Graph Neural Networks [52.04194209002702]
Graph neural networks (GNNs) emerge as a powerful family of representation learning models on graphs.
We propose a node-wise localization of GNNs by accounting for both global and local aspects of the graph.
We conduct extensive experiments on four benchmark graphs, and consistently obtain promising performance surpassing the state-of-the-art GNNs.
arXiv Detail & Related papers (2021-10-27T10:02:03Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z) - Self-Supervised Graph Representation Learning via Global Context
Prediction [31.07584920486755]
This paper introduces a novel self-supervised strategy for graph representation learning by exploiting natural supervision provided by the data itself.
We randomly select pairs of nodes in a graph and train a well-designed neural net to predict the contextual position of one node relative to the other.
Our underlying hypothesis is that the representations learned from such within-graph context would capture the global topology of the graph and finely characterize the similarity and differentiation between nodes.
arXiv Detail & Related papers (2020-03-03T15:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.