論文の概要: Diffgrasp: Whole-Body Grasping Synthesis Guided by Object Motion Using a Diffusion Model
- arxiv url: http://arxiv.org/abs/2412.20657v1
- Date: Mon, 30 Dec 2024 02:21:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:06:11.109545
- Title: Diffgrasp: Whole-Body Grasping Synthesis Guided by Object Motion Using a Diffusion Model
- Title(参考訳): Diffgrasp:拡散モデルを用いた物体運動ガイド付き全体グラスピング合成
- Authors: Yonghao Zhang, Qiang He, Yanguang Wan, Yinda Zhang, Xiaoming Deng, Cuixia Ma, Hongan Wang,
- Abstract要約: 本稿では,身体,手,与えられた物体の動き列の関係をモデル化する,シンプルで効果的な枠組みを提案する。
我々は,新たな接触認識損失を導入し,データ駆動型,慎重に設計されたガイダンスを取り入れた。
実験の結果,本手法は最先端の手法より優れ,至適な全身運動系列を生成することがわかった。
- 参考スコア(独自算出の注目度): 25.00532805042292
- License:
- Abstract: Generating high-quality whole-body human object interaction motion sequences is becoming increasingly important in various fields such as animation, VR/AR, and robotics. The main challenge of this task lies in determining the level of involvement of each hand given the complex shapes of objects in different sizes and their different motion trajectories, while ensuring strong grasping realism and guaranteeing the coordination of movement in all body parts. Contrasting with existing work, which either generates human interaction motion sequences without detailed hand grasping poses or only models a static grasping pose, we propose a simple yet effective framework that jointly models the relationship between the body, hands, and the given object motion sequences within a single diffusion model. To guide our network in perceiving the object's spatial position and learning more natural grasping poses, we introduce novel contact-aware losses and incorporate a data-driven, carefully designed guidance. Experimental results demonstrate that our approach outperforms the state-of-the-art method and generates plausible whole-body motion sequences.
- Abstract(参考訳): アニメーションやVR/AR,ロボティクスといったさまざまな分野において,高品質な人体オブジェクトインタラクション動作シーケンスの生成がますます重要になっている。
このタスクの主な課題は、異なる大きさの物体の複雑な形状と異なる運動軌跡を与えられた各手の関与レベルを決定することである。
従来の作業とは対照的に,人体,手,対象物間の関係を単一の拡散モデルでモデル化するシンプルな枠組みを提案する。
物体の空間的位置を知覚し、より自然な把握ポーズを学習する際のネットワークのガイドとして、新しい接触認識損失を導入し、データ駆動型で慎重に設計されたガイダンスを組み込む。
実験の結果,本手法は最先端の手法より優れ,至適な全身運動系列を生成することがわかった。
関連論文リスト
- BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects [70.20706475051347]
BimArtは3Dバイマニュアルハンドインタラクションを音声オブジェクトと合成するための新しい生成手法である。
まず, 物体軌道上に配置された距離ベースの接触マップを, 音声認識特徴表現を用いて生成する。
学習された接触は手の動き生成装置のガイドに使われ、物体の動きや調音のための多彩で現実的なバイマニュアルの動きが生成されます。
論文 参考訳(メタデータ) (2024-12-06T14:23:56Z) - THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
我々は、リレーショナルインターベンション(THOR)を用いたテキスト誘導型ヒューマンオブジェクト相互作用拡散モデルを提案する。
各拡散段階において、テキスト誘導された人間と物体の動きを開始し、その後、人と物体の関係を利用して物体の動きに介入する。
テキスト記述をシームレスに統合するText2HOIデータセットであるText-BEHAVEを,現在最大規模で公開されている3D HOIデータセットに構築する。
論文 参考訳(メタデータ) (2024-03-17T13:17:25Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANSは、現在利用可能な最も包括的なモーションキャプチャーHSIデータセットである。
人体全体の動きや部分レベルの物体の動きを複雑に捉えます。
本研究では,任意の長さのHSI配列を効率的に生成する拡散型自己回帰モデルを提案する。
論文 参考訳(メタデータ) (2024-03-13T15:45:04Z) - Hand-Centric Motion Refinement for 3D Hand-Object Interaction via
Hierarchical Spatial-Temporal Modeling [18.128376292350836]
粗い手の動き改善のためのデータ駆動方式を提案する。
まず,手と物体の動的空間的関係を記述するために,手中心の表現を設計する。
第2に,手動物体相互作用の動的手がかりを捉えるために,新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-29T09:17:51Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
大規模物体の操作におけるフルボディ人体動作合成の問題点について検討する。
条件付き拡散フレームワークであるOMOMO(Object Motion Guided Human Motion synthesis)を提案する。
我々は、操作対象物にスマートフォンを装着するだけで、全身の人間の操作動作をキャプチャする新しいシステムを開発した。
論文 参考訳(メタデータ) (2023-09-28T08:22:00Z) - GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency [57.9920824261925]
手は器用で多用途なマニピュレータであり、人間が物体や環境とどのように相互作用するかの中心である。
現実的な手オブジェクトの相互作用をモデル化することは、コンピュータグラフィックス、コンピュータビジョン、混合現実の応用において重要である。
GRIPは、体と物体の3次元運動を入力として取り、物体の相互作用の前、中、後の両方の両手の現実的な動きを合成する学習ベースの手法である。
論文 参考訳(メタデータ) (2023-08-22T17:59:51Z) - NIFTY: Neural Object Interaction Fields for Guided Human Motion
Synthesis [21.650091018774972]
我々は、特定の物体に付随する神経相互作用場を作成し、人間のポーズを入力として与えられた有効な相互作用多様体までの距離を出力する。
この相互作用場は、対象条件付きヒトの運動拡散モデルのサンプリングを導く。
いくつかの物体で座ったり持ち上げたりするための現実的な動きを合成し、動きの質や動作完了の成功の観点から、代替のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-07-14T17:59:38Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: 命令型ニューラル表現を用いたタスク指向型ヒューマンオブジェクトインタラクション生成
本手法は時間座標のみでパラメータ化される連続運動を生成する。
この研究は、一般的なヒューマン・シーンの相互作用シミュレーションに向けて一歩前進する。
論文 参考訳(メタデータ) (2023-03-23T09:31:56Z) - IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions [69.95820880360345]
そこで本研究では,仮想人物の全身動作を3Dオブジェクトで合成する最初のフレームワークを提案する。
本システムでは,オブジェクトと仮想文字の関連意図を入力テキストとして記述する。
その結果, 80%以上のシナリオにおいて, 合成された全身運動は参加者よりリアルに見えることがわかった。
論文 参考訳(メタデータ) (2022-12-14T23:59:24Z) - Task-Generic Hierarchical Human Motion Prior using VAEs [44.356707509079044]
人間の動きを記述する深い生成モデルは、幅広いコンピュータビジョンやグラフィックタスクに役立てることができる。
本稿では,グローバル・ローカル・ラテント・スペースの組み合わせを用いて,特定のタスクに依存しない複雑な人間の動作を学習する手法を提案する。
映像に基づく人間のポーズ推定を含む様々なタスクにおいて,階層的な動き変動自動エンコーダの有効性を実証する。
論文 参考訳(メタデータ) (2021-06-07T23:11:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。