論文の概要: BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects
- arxiv url: http://arxiv.org/abs/2412.05066v1
- Date: Fri, 06 Dec 2024 14:23:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-09 15:55:08.284901
- Title: BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects
- Title(参考訳): BimArt:Articulated Objectsを用いた3次元バイマンインタラクションの統一手法
- Authors: Wanyue Zhang, Rishabh Dabral, Vladislav Golyanik, Vasileios Choutas, Eduardo Alvarado, Thabo Beeler, Marc Habermann, Christian Theobalt,
- Abstract要約: BimArtは3Dバイマニュアルハンドインタラクションを音声オブジェクトと合成するための新しい生成手法である。
まず, 物体軌道上に配置された距離ベースの接触マップを, 音声認識特徴表現を用いて生成する。
学習された接触は手の動き生成装置のガイドに使われ、物体の動きや調音のための多彩で現実的なバイマニュアルの動きが生成されます。
- 参考スコア(独自算出の注目度): 70.20706475051347
- License:
- Abstract: We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that excel over the state-of-the-art in motion quality and diversity.
- Abstract(参考訳): 本稿では,BimArtについて述べる。BimArtは3次元バイマニュアルハンドインタラクションを音声オブジェクトと合成するための新しい生成手法である。
従来の作業とは異なり、我々は参照の把握、粗い手の軌跡、あるいは把握と明瞭化のための分離モードに依存していない。
そこで我々はまず,物体軌跡に規定された距離ベースの接触マップを調音認識特徴表現で生成し,操作のためのリッチな双方向パターンを明らかにした。
学習された接触は手の動き生成装置のガイドに使われ、物体の動きや調音のための多彩で現実的なバイマニュアルの動きが生成されます。
本研究は,2次元手-物間相互作用の複雑な高次元空間をモデル化する上での有効性を実証し,特徴表現と接点に関する重要な知見を提供する。
総合的な定量的実験を通じて、動作の質と多様性の最先端を超越した、シンプルで高品質なハンドオブジェクトアニメーションへの明確な一歩を実証する。
関連論文リスト
- Diffgrasp: Whole-Body Grasping Synthesis Guided by Object Motion Using a Diffusion Model [25.00532805042292]
本稿では,身体,手,与えられた物体の動き列の関係をモデル化する,シンプルで効果的な枠組みを提案する。
我々は,新たな接触認識損失を導入し,データ駆動型,慎重に設計されたガイダンスを取り入れた。
実験の結果,本手法は最先端の手法より優れ,至適な全身運動系列を生成することがわかった。
論文 参考訳(メタデータ) (2024-12-30T02:21:43Z) - DiffH2O: Diffusion-Based Synthesis of Hand-Object Interactions from Textual Descriptions [15.417836855005087]
DiffH2Oとよばれる新しい手法を提案する。
本手法では,限られたデータから効果的な学習を可能にする3つの手法を導入する。
論文 参考訳(メタデータ) (2024-03-26T16:06:42Z) - Hand-Centric Motion Refinement for 3D Hand-Object Interaction via
Hierarchical Spatial-Temporal Modeling [18.128376292350836]
粗い手の動き改善のためのデータ駆動方式を提案する。
まず,手と物体の動的空間的関係を記述するために,手中心の表現を設計する。
第2に,手動物体相互作用の動的手がかりを捉えるために,新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-29T09:17:51Z) - GRIP: Generating Interaction Poses Using Spatial Cues and Latent Consistency [57.9920824261925]
手は器用で多用途なマニピュレータであり、人間が物体や環境とどのように相互作用するかの中心である。
現実的な手オブジェクトの相互作用をモデル化することは、コンピュータグラフィックス、コンピュータビジョン、混合現実の応用において重要である。
GRIPは、体と物体の3次元運動を入力として取り、物体の相互作用の前、中、後の両方の両手の現実的な動きを合成する学習ベースの手法である。
論文 参考訳(メタデータ) (2023-08-22T17:59:51Z) - Novel-view Synthesis and Pose Estimation for Hand-Object Interaction
from Sparse Views [41.50710846018882]
スパースビューから手動物体間相互作用を推定するニューラルレンダリングとポーズ推定システムを提案する。
まず,手や物体の形状や外観を,神経表現と別々に学習する。
オンライン段階では、動的手-物体相互作用を理解するためのレンダリングベースのジョイントモデルフィッティングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-08-22T05:17:41Z) - IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object
Interactions [69.95820880360345]
そこで本研究では,仮想人物の全身動作を3Dオブジェクトで合成する最初のフレームワークを提案する。
本システムでは,オブジェクトと仮想文字の関連意図を入力テキストとして記述する。
その結果, 80%以上のシナリオにおいて, 合成された全身運動は参加者よりリアルに見えることがわかった。
論文 参考訳(メタデータ) (2022-12-14T23:59:24Z) - Estimating 3D Motion and Forces of Human-Object Interactions from
Internet Videos [49.52070710518688]
一つのRGBビデオからオブジェクトと対話する人の3D動作を再構築する手法を提案する。
本手法では,被験者の3次元ポーズを物体のポーズ,接触位置,人体の接触力とともに推定する。
論文 参考訳(メタデータ) (2021-11-02T13:40:18Z) - H2O: Two Hands Manipulating Objects for First Person Interaction
Recognition [70.46638409156772]
両手操作対象のマーカーレス3Dアノテーションを用いて,エゴセントリックな対話認識のための包括的なフレームワークを提案する。
本手法は,2つの手の3次元ポーズと操作対象の6次元ポーズのアノテーションと,それぞれのフレームのインタラクションラベルを生成する。
我々のデータセットは、H2O (2 Hands and Objects)と呼ばれ、同期されたマルチビューRGB-D画像、対話ラベル、オブジェクトクラス、左右の手でのグラウンドトルース3Dポーズ、6Dオブジェクトポーズ、グラウンドトルースカメラポーズ、オブジェクトメッシュ、シーンポイントクラウドを提供する。
論文 参考訳(メタデータ) (2021-04-22T17:10:42Z) - Joint Hand-object 3D Reconstruction from a Single Image with
Cross-branch Feature Fusion [78.98074380040838]
特徴空間において手とオブジェクトを共同で検討し、2つの枝の相互性について検討する。
入力されたRGB画像に推定深度マップを付加するために補助深度推定モジュールを用いる。
提案手法は,オブジェクトの復元精度において既存手法よりも優れていた。
論文 参考訳(メタデータ) (2020-06-28T09:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。