Attention-Driven Metapath Encoding in Heterogeneous Graphs
- URL: http://arxiv.org/abs/2412.20678v1
- Date: Mon, 30 Dec 2024 03:15:25 GMT
- Title: Attention-Driven Metapath Encoding in Heterogeneous Graphs
- Authors: Calder Katyal,
- Abstract summary: One of the emerging techniques in node classification in heterogeneous graphs is to restrict message aggregation to pre-defined, semantically meaningful structures called metapaths.
This work is the first attempt to incorporate attention into the process of encoding entire metapaths without dropping intermediate nodes.
In particular, we construct two encoders: the first uses sequential attention to extend the multi-hop message passing algorithm designed in citetmagna to the metapath setting, and the second incorporates direct attention to extract semantic relations in the metapath.
- Score: 0.0
- License:
- Abstract: One of the emerging techniques in node classification in heterogeneous graphs is to restrict message aggregation to pre-defined, semantically meaningful structures called metapaths. This work is the first attempt to incorporate attention into the process of encoding entire metapaths without dropping intermediate nodes. In particular, we construct two encoders: the first uses sequential attention to extend the multi-hop message passing algorithm designed in \citet{magna} to the metapath setting, and the second incorporates direct attention to extract semantic relations in the metapath. The model then employs the intra-metapath and inter-metapath aggregation mechanisms of \citet{han}. We furthermore use the powerful training scheduler specialized for heterogeneous graphs that was developed in \citet{lts}, ensuring the model slowly learns how to classify the most difficult nodes. The result is a resilient, general-purpose framework for capturing semantic structures in heterogeneous graphs. In particular, we demonstrate that our model is competitive with state-of-the-art models on performing node classification on the IMDB dataset, a popular benchmark introduced in \citet{benchmark}.
Related papers
- Contrastive Meta-Learning for Few-shot Node Classification [54.36506013228169]
Few-shot node classification aims to predict labels for nodes on graphs with only limited labeled nodes as references.
We create a novel contrastive meta-learning framework on graphs, named COSMIC, with two key designs.
arXiv Detail & Related papers (2023-06-27T02:22:45Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - MECCH: Metapath Context Convolution-based Heterogeneous Graph Neural
Networks [45.68142605304948]
Heterogeneous graph neural networks (HGNNs) were proposed for representation learning on structural data with multiple types of nodes and edges.
We present a novel Metapath Context Convolution-based Heterogeneous Graph Neural Network (MECCH)
arXiv Detail & Related papers (2022-11-23T09:13:33Z) - Meta-node: A Concise Approach to Effectively Learn Complex Relationships
in Heterogeneous Graphs [18.65171129524357]
We propose a novel concept of meta-node for message passing that can learn enriched relational knowledge from complex heterogeneous graphs without any meta-paths and meta-graphs.
Unlike meta-paths and meta-graphs, meta-nodes do not require any pre-processing steps that require expert knowledge.
In the experiments on node clustering and classification tasks, the proposed meta-node message passing method outperforms state-of-the-arts that depend on meta-paths.
arXiv Detail & Related papers (2022-10-26T05:04:29Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
We propose a higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics.
It shows superior performance against the state-of-the-art methods in node classification, node clustering, and visualization.
arXiv Detail & Related papers (2021-04-16T04:56:38Z) - Metapaths guided Neighbors aggregated Network for?Heterogeneous Graph
Reasoning [5.228629954007088]
We propose a Metapaths-guided Neighbors-aggregated Heterogeneous Graph Neural Network to improve performance.
We conduct extensive experiments for the proposed MHN on three real-world heterogeneous graph datasets.
arXiv Detail & Related papers (2021-03-11T05:42:06Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph
Embedding [36.6390478350677]
We propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance.
MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths.
Experiments show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
arXiv Detail & Related papers (2020-02-05T08:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.