論文の概要: UBER: Uncertainty-Based Evolution with Large Language Models for Automatic Heuristic Design
- arxiv url: http://arxiv.org/abs/2412.20694v1
- Date: Mon, 30 Dec 2024 04:05:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:07:56.549039
- Title: UBER: Uncertainty-Based Evolution with Large Language Models for Automatic Heuristic Design
- Title(参考訳): UBER: 自動ヒューリスティック設計のための大規模言語モデルによる不確実性に基づく進化
- Authors: Zijie Chen, Zhanchao Zhou, Yu Lu, Renjun Xu, Lili Pan, Zhenzhong Lan,
- Abstract要約: 本稿では,FunSearchフレームワーク上に不確実性を統合することにより,自動設計のための進化的アルゴリズム(EA)手法を改良するUBER(Uncertainty-Based Evolution for Refinement)を提案する。
UBERは、適応探索・探索バランスのための不確かさ-包括的進化過程(UIEP)と、人口多様性を維持するための原則的不確実-包括的島再設定(UIIS)という2つの重要なイノベーションを紹介している。
- 参考スコア(独自算出の注目度): 14.131178103518907
- License:
- Abstract: NP-hard problem-solving traditionally relies on heuristics, but manually crafting effective heuristics for complex problems remains challenging. While recent work like FunSearch has demonstrated that large language models (LLMs) can be leveraged for heuristic design in evolutionary algorithm (EA) frameworks, their potential is not fully realized due to its deficiency in exploitation and exploration. We present UBER (Uncertainty-Based Evolution for Refinement), a method that enhances LLM+EA methods for automatic heuristic design by integrating uncertainty on top of the FunSearch framework. UBER introduces two key innovations: an Uncertainty-Inclusive Evolution Process (UIEP) for adaptive exploration-exploitation balance, and a principled Uncertainty-Inclusive Island Reset (UIIS) strategy for maintaining population diversity. Through extensive experiments on challenging NP-complete problems, UBER demonstrates significant improvements over FunSearch. Our work provides a new direction for the synergy of LLMs and EA, advancing the field of automatic heuristic design.
- Abstract(参考訳): NP-hard問題解決は伝統的にヒューリスティックに頼っているが、複雑な問題に対して効果的なヒューリスティックを手作業で作成することは依然として困難である。
FunSearchのような最近の研究は、進化的アルゴリズム(EA)フレームワークにおけるヒューリスティックな設計に大規模な言語モデル(LLM)を活用できることを実証している。
本稿では,FunSearchフレームワーク上に不確実性を統合することで,自動ヒューリスティック設計のためのLLM+EA法を強化する方法であるUBER(Uncertainty-Based Evolution for Refinement)を提案する。
UBERは、適応探索・探索バランスのための不確かさ-包括的進化過程(UIEP)と、人口多様性を維持するための原則的不確実-包括的島再設定(UIIS)という2つの重要なイノベーションを紹介している。
NP完全問題に対する広範な実験を通じて、UBERはFunSearchよりも大幅に改善されている。
我々の研究は、LLMとEAのシナジーに新たな方向を与え、自動ヒューリスティックデザインの分野を前進させる。
関連論文リスト
- Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPTシリーズは、現実世界のコード提出活動から学び、シミュレーションする。
Lingma SWE-GPT 72BはGitHubの30.20%の問題を解決する。
論文 参考訳(メタデータ) (2024-11-01T14:27:16Z) - Automatic programming via large language models with population self-evolution for dynamic job shop scheduling problem [12.535474591707105]
本稿では,人間専門家の自己回帰的デザイン戦略に触発された一般検索フレームワークである,新規な自己進化的手法を提案する。
実験の結果,提案手法はGP, GEP, エンドツーエンドの深層強化学習法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-10-30T02:54:31Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - Multi-objective Evolution of Heuristic Using Large Language Model [29.337470185034555]
ヒューリスティックスは、様々な探索と最適化の問題に取り組むために一般的に用いられる。
最近の研究は、その強力な言語と符号化能力を活用して、大規模言語モデル(LLM)を自動検索に取り入れている。
本稿では,多目的最適化問題として探索をモデル化し,最適性能以外の実践的基準を導入することを提案する。
論文 参考訳(メタデータ) (2024-09-25T12:32:41Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
本稿では,オープンワールド対話型タスクの解法において,LLMエージェントの強化を目的としたWeak Exploration to Strong Exploitation (WESE)を提案する。
WESEは、探究と搾取のプロセスを分離し、費用対効果の弱いエージェントを用いて世界的知識の探索を行う。
次に、獲得した知識を格納し、タスク関連知識を抽出する知識グラフベースの戦略を導入する。
論文 参考訳(メタデータ) (2024-04-11T03:31:54Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model [22.64392837434924]
EoHは自然言語における思考の考えを表しており、これは「思考」と呼ばれている。
それらはLarge Language Models (LLM) によって実行可能なコードに変換される。
EoHは、オンラインのビンパッキング問題に対して、広く使われている人手作りのベースラインアルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2024-01-04T04:11:59Z) - Large Language Models as Evolutionary Optimizers [37.92671242584431]
本稿では,大言語モデル(LLM)を進化論として初めて研究する。
主な利点は、最小限のドメイン知識と人間の努力が必要であり、モデルに追加のトレーニングは必要ありません。
また,進化探索における自己適応機構の有効性についても検討した。
論文 参考訳(メタデータ) (2023-10-29T15:44:52Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
そこで本稿では,提案するハイブリッドバックボーンアーキテクチャを自動検索するOP-NASアルゴリズムを提案する。
提案するOP-NASの効率を向上させるために,探索アルゴリズムと候補モデルの評価を最適化する。
実験の結果、検索されたアーキテクチャ(AutoBERT-Zero)は、様々な下流タスクにおいてBERTとそのバリエーションの異なるモデル容量を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-07-15T16:46:01Z) - Reinforcement Learning for Flexibility Design Problems [77.37213643948108]
フレキシビリティ設計問題に対する強化学習フレームワークを開発した。
実験の結果、RL法は古典的手法よりも優れた解を常に見出すことがわかった。
論文 参考訳(メタデータ) (2021-01-02T02:44:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。