論文の概要: Offline Model-Based Optimization: Comprehensive Review
- arxiv url: http://arxiv.org/abs/2503.17286v1
- Date: Fri, 21 Mar 2025 16:35:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:57.147572
- Title: Offline Model-Based Optimization: Comprehensive Review
- Title(参考訳): オフラインモデルに基づく最適化: 総合的なレビュー
- Authors: Minsu Kim, Jiayao Gu, Ye Yuan, Taeyoung Yun, Zixuan Liu, Yoshua Bengio, Can Chen,
- Abstract要約: オフライン最適化は、オフラインデータセットのみを使用してブラックボックス機能の最適化を目標とする、科学とエンジニアリングの基本的な課題である。
モデルベース最適化の最近の進歩は、オフライン固有の代理モデルと生成モデルを開発するために、ディープニューラルネットワークの一般化能力を活用している。
科学的な発見を加速させる効果が増大しているにもかかわらず、この分野は包括的なレビューを欠いている。
- 参考スコア(独自算出の注目度): 61.91350077539443
- License:
- Abstract: Offline optimization is a fundamental challenge in science and engineering, where the goal is to optimize black-box functions using only offline datasets. This setting is particularly relevant when querying the objective function is prohibitively expensive or infeasible, with applications spanning protein engineering, material discovery, neural architecture search, and beyond. The main difficulty lies in accurately estimating the objective landscape beyond the available data, where extrapolations are fraught with significant epistemic uncertainty. This uncertainty can lead to objective hacking(reward hacking), exploiting model inaccuracies in unseen regions, or other spurious optimizations that yield misleadingly high performance estimates outside the training distribution. Recent advances in model-based optimization(MBO) have harnessed the generalization capabilities of deep neural networks to develop offline-specific surrogate and generative models. Trained with carefully designed strategies, these models are more robust against out-of-distribution issues, facilitating the discovery of improved designs. Despite its growing impact in accelerating scientific discovery, the field lacks a comprehensive review. To bridge this gap, we present the first thorough review of offline MBO. We begin by formalizing the problem for both single-objective and multi-objective settings and by reviewing recent benchmarks and evaluation metrics. We then categorize existing approaches into two key areas: surrogate modeling, which emphasizes accurate function approximation in out-of-distribution regions, and generative modeling, which explores high-dimensional design spaces to identify high-performing designs. Finally, we examine the key challenges and propose promising directions for advancement in this rapidly evolving field including safe control of superintelligent systems.
- Abstract(参考訳): オフライン最適化は、オフラインデータセットのみを使用してブラックボックス機能の最適化を目標とする、科学とエンジニアリングの基本的な課題である。
この設定は、タンパク質工学、材料発見、ニューラルアーキテクチャサーチなど、目的関数のクエリが違法に高価または不可能である場合に特に重要となる。
主な困難は、外挿が重要なてんかんの不確実性によって引き起こされる、利用可能なデータを超えた客観的な景観を正確に推定することである。
この不確実性は、客観的なハッキング(リワードハッキング)、未確認領域におけるモデル不正確さの活用、あるいはトレーニングディストリビューションの外で誤って高いパフォーマンスの見積を導出するその他の急激な最適化につながる可能性がある。
モデルベース最適化(MBO)の最近の進歩は、オフライン固有の代理モデルと生成モデルを開発するために、ディープニューラルネットワークの一般化能力を活用している。
慎重に設計された戦略で訓練されたこれらのモデルは、配布外問題に対してより堅牢であり、改良された設計の発見を容易にする。
科学的な発見を加速させる効果が増大しているにもかかわらず、この分野は包括的なレビューを欠いている。
このギャップを埋めるために、オフラインMBOに関する最初の徹底的なレビューを提示する。
まず、単目的設定と多目的設定の両方の問題の形式化と、最近のベンチマークと評価基準の見直しから始める。
次に、既存のアプローチを、分布外領域における正確な関数近似を強調する代理モデリングと、高次元設計空間を探索して高い性能設計を識別する生成モデリングの2つの重要な領域に分類する。
最後に,これらの課題について検討し,超知能システムの安全な制御を含む,この急速に発展する分野における進歩に向けた有望な方向性を提案する。
関連論文リスト
- A Survey of Automatic Prompt Engineering: An Optimization Perspective [18.933465526053453]
本稿では,統合最適化理論レンズによる自動プロンプト工学の総合的な研究について紹介する。
我々は離散的かつ連続的でハイブリッドなプロンプト空間上の問題としてプロンプト最適化を定式化する。
制約のある最適化とエージェント指向のプロンプト設計において、未探索のフロンティアを強調した。
論文 参考訳(メタデータ) (2025-02-17T08:48:07Z) - Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
生成拡散モデル(GDM)は,ネットワーク最適化の新しいアプローチとして期待されている。
本研究ではまず,生成モデルの本質的な特徴について考察する。
本稿では,識別的ネットワーク最適化よりも生成モデルの利点を簡潔かつ直感的に示す。
論文 参考訳(メタデータ) (2024-11-01T09:05:47Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward Hacking(報酬の過度な最適化)は依然として重要な課題だ。
本稿では,報奨モデル,すなわちInfoRMのためのフレームワークを提案する。
InfoRMの過度な最適化検出機構は、有効であるだけでなく、幅広いデータセットにわたって堅牢であることを示す。
論文 参考訳(メタデータ) (2024-02-14T17:49:07Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
本稿では、オフラインデータ例の集合を除いて目的関数が不明なオフライン最適化の問題について考察する。
未知の目的関数を学習して最適化するのではなく、より直感的で直接的な視点で、最適化は生成モデルからサンプリングするプロセスと考えることができる。
論文 参考訳(メタデータ) (2024-01-04T01:32:50Z) - Design-Bench: Benchmarks for Data-Driven Offline Model-Based
Optimization [82.02008764719896]
ブラックボックスモデルに基づく最適化問題は、タンパク質、DNA配列、航空機、ロボットの設計など、幅広い領域で広く使われている。
本稿では,統合評価プロトコルと最近の手法の参照実装を備えたオフラインMBOのためのベンチマークであるDesign-Benchを提案する。
私たちのベンチマークには、生物学、材料科学、ロボット工学における現実世界の最適化問題から派生した、多種多様な現実的なタスクが含まれています。
論文 参考訳(メタデータ) (2022-02-17T05:33:27Z) - Careful! Training Relevance is Real [0.7742297876120561]
我々は、トレーニングの妥当性を強制するために設計された制約を提案する。
提案した制約を加えることで,ソリューションの品質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-01-12T11:54:31Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。