論文の概要: QUBE: Enhancing Automatic Heuristic Design via Quality-Uncertainty Balanced Evolution
- arxiv url: http://arxiv.org/abs/2412.20694v4
- Date: Fri, 21 Feb 2025 03:28:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 12:49:57.404712
- Title: QUBE: Enhancing Automatic Heuristic Design via Quality-Uncertainty Balanced Evolution
- Title(参考訳): QUBE:品質不確実性バランス進化による自動ヒューリスティック設計の強化
- Authors: Zijie Chen, Zhanchao Zhou, Yu Lu, Renjun Xu, Lili Pan, Zhenzhong Lan,
- Abstract要約: Quality-Uncertainty Balanced Evolution (QUBE)は、FunSearchフレームワーク内で優先度基準を再定義することによって、LLM+EAメソッドを強化する新しいアプローチである。
QUBEは、提案した不確実性-包括的品質基準に基づいて、品質-不確実性トレードオフ基準(QUTC)を採用している。
NP完全問題に対する広範な実験を通じて、QUBEはFunSearchやベースラインメソッドよりも大きなパフォーマンス改善を示す。
- 参考スコア(独自算出の注目度): 14.131178103518907
- License:
- Abstract: Solving NP-hard problems traditionally relies on heuristics, yet manually designing effective heuristics for complex problems remains a significant challenge. While recent advancements like FunSearch have shown that large language models (LLMs) can be integrated into evolutionary algorithms (EAs) for heuristic design, their potential is hindered by limitations in balancing exploitation and exploration. We introduce Quality-Uncertainty Balanced Evolution (QUBE), a novel approach that enhances LLM+EA methods by redefining the priority criterion within the FunSearch framework. QUBE employs the Quality-Uncertainty Trade-off Criterion (QUTC), based on our proposed Uncertainty-Inclusive Quality metric, to evaluate and guide the evolutionary process. Through extensive experiments on challenging NP-complete problems, QUBE demonstrates significant performance improvements over FunSearch and baseline methods. Our code are available at https://github.com/zzjchen/QUBE_code.
- Abstract(参考訳): NPハード問題の解法は伝統的にヒューリスティックに頼っているが、複雑な問題に対して効果的なヒューリスティックを手作業で設計することは大きな課題である。
FunSearchのような最近の進歩は、大規模言語モデル(LLM)がヒューリスティックデザインのために進化的アルゴリズム(EA)に統合できることを示してきたが、それらのポテンシャルは、エクスプロイトと探索のバランスの限界によって妨げられている。
本稿では,FunSearch フレームワーク内で優先度基準を再定義することによって LLM+EA メソッドを強化する新しいアプローチである Quality-Uncertainity Balanced Evolution (QUBE) を紹介する。
QUBEは、我々の提案した不確実性-包括的品質基準に基づく品質-不確実性トレードオフ基準(QUTC)を用いて、進化過程を評価し、導く。
NP完全問題に対する広範な実験を通じて、QUBEはFunSearchやベースラインメソッドよりも大きなパフォーマンス改善を示す。
私たちのコードはhttps://github.com/zzjchen/QUBE_code.comから入手可能です。
関連論文リスト
- Multi-objective Evolution of Heuristic Using Large Language Model [29.337470185034555]
探索を多目的最適化問題としてモデル化し、最適性能を超える追加の実践的基準を導入することを検討する。
我々は,最初の多目的探索フレームワークである多目的ヒューリスティック進化(MEoH)を提案する。
論文 参考訳(メタデータ) (2024-09-25T12:32:41Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - The hop-like problem nature -- unveiling and modelling new features of real-world problems [0.0]
最適化プロセスのホップに基づく解析を提案する。
その結果、有名なLeading Ones問題の特徴のいくつかの存在が示唆された。
実験では、GAの有効性を改善するためにどのようなメカニズムを提案する必要があるかを明らかにする。
論文 参考訳(メタデータ) (2024-06-03T11:30:04Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
大規模言語モデル(LLM)は人工知能の大幅な進歩を導いた。
数学的問題を解く能力を高めるために,textbfSEquential subtextbfGoal textbfOptimization (SEGO) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:56:40Z) - Multiobjective Evolutionary Component Effect on Algorithm behavior [0.04588028371034406]
パフォーマンス改善につながる最も影響力のあるコンポーネントは何かは不明だ。
この手法を,反復レース (irace) 構成パッケージによって設計された分解(MOEA/D)に基づくチューニング多目的進化アルゴリズムに適用する。
本稿では,検索トラジェクトリ・ネットワーク(STN),人口の多様性,時空の超体積値について,アルゴリズム成分の影響を比較した。
論文 参考訳(メタデータ) (2023-07-31T16:02:56Z) - Evolutionary quantum feature selection [0.0]
本研究では,量子回路進化(QCE)アルゴリズムを用いた量子特徴選択法(EQFS)を提案する。
提案手法は,浅部深度回路を用いてスパース確率分布を生成するQCEのユニークな機能を利用する。
計算実験により、EQFSは特徴数の2次スケーリングと良い特徴の組み合わせを識別できることを示した。
論文 参考訳(メタデータ) (2023-03-13T14:01:37Z) - Simulation-guided Beam Search for Neural Combinatorial Optimization [13.072343634530883]
ニューラル最適化問題に対するシミュレーション誘導ビームサーチ(SGBS)を提案する。
我々は、SGBSと効率的なアクティブサーチ(EAS)を併用し、SGBSはEASでバックプロパゲーションされたソリューションの品質を高める。
提案手法をよく知られたCOベンチマークで評価し,SGBSが合理的な仮定で得られた解の質を著しく向上することを示す。
論文 参考訳(メタデータ) (2022-07-13T13:34:35Z) - AutoSpace: Neural Architecture Search with Less Human Interference [84.42680793945007]
現在のニューラルネットワークアーキテクチャ検索(NAS)アルゴリズムは、ネットワーク構築のための検索空間を設計するための専門知識と努力を必要とします。
探索空間を最適なものに進化させる新しい微分可能な進化フレームワークであるAutoSpaceを提案する。
学習した検索空間では、最近のNASアルゴリズムの性能は、以前手作業で設計した空間に比べて大幅に改善できる。
論文 参考訳(メタデータ) (2021-03-22T13:28:56Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。