Joint Scoring Rules: Zero-Sum Competition Avoids Performative Prediction
- URL: http://arxiv.org/abs/2412.20732v1
- Date: Mon, 30 Dec 2024 06:06:45 GMT
- Title: Joint Scoring Rules: Zero-Sum Competition Avoids Performative Prediction
- Authors: Rubi Hudson,
- Abstract summary: In a decision-making scenario, a principal could use conditional predictions from an expert agent to inform their choice.
An agent optimizing for predictive accuracy is incentivized to manipulate their principal towards more predictable actions, which prevents that principal from being able to deterministically select their true preference.
We demonstrate that this impossibility result can be overcome through the joint evaluation of multiple agents.
- Score: 0.0
- License:
- Abstract: In a decision-making scenario, a principal could use conditional predictions from an expert agent to inform their choice. However, this approach would introduce a fundamental conflict of interest. An agent optimizing for predictive accuracy is incentivized to manipulate their principal towards more predictable actions, which prevents that principal from being able to deterministically select their true preference. We demonstrate that this impossibility result can be overcome through the joint evaluation of multiple agents. When agents are made to engage in zero-sum competition, their incentive to influence the action taken is eliminated, and the principal can identify and take the action they most prefer. We further prove that this zero-sum setup is unique, efficiently implementable, and applicable under stochastic choice. Experiments in a toy environment demonstrate that training on a zero-sum objective significantly enhances both predictive accuracy and principal utility, and can eliminate previously learned manipulative behavior.
Related papers
- Conformal Prediction Sets Can Cause Disparate Impact [4.61590049339329]
We show that providing prediction sets can lead to disparate impact in decisions.
We propose to equalize set sizes across groups which empirically leads to lower disparate impact.
arXiv Detail & Related papers (2024-10-02T18:00:01Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
We seek to define a criticality framework with both a quantifiable ground truth and a clear significance to users.
We introduce true criticality as the expected drop in reward when an agent deviates from its policy for n consecutive random actions.
We also introduce the concept of proxy criticality, a low-overhead metric that has a statistically monotonic relationship to true criticality.
arXiv Detail & Related papers (2024-09-26T21:00:45Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.
We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - Causal Strategic Learning with Competitive Selection [10.237954203296187]
We study the problem of agent selection in causal strategic learning under multiple decision makers.
We show that the optimal selection rule is a trade-off between selecting the best agents and providing incentives to maximise the agents' improvement.
We provide a cooperative protocol which all decision makers must collectively adopt to recover the true causal parameters.
arXiv Detail & Related papers (2023-08-30T18:43:11Z) - Incentive-Theoretic Bayesian Inference for Collaborative Science [59.15962177829337]
We study hypothesis testing when there is an agent with a private prior about an unknown parameter.
We show how the principal can conduct statistical inference that leverages the information that is revealed by an agent's strategic behavior.
arXiv Detail & Related papers (2023-07-07T17:59:01Z) - Explainability's Gain is Optimality's Loss? -- How Explanations Bias
Decision-making [0.0]
Explanations help to facilitate communication between the algorithm and the human decision-maker.
Feature-based explanations' semantics of causal models induce leakage from the decision-maker's prior beliefs.
Such differences can lead to sub-optimal and biased decision outcomes.
arXiv Detail & Related papers (2022-06-17T11:43:42Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Why do you think that? Exploring Faithful Sentence-Level Rationales
Without Supervision [60.62434362997016]
We propose a differentiable training-framework to create models which output faithful rationales on a sentence level.
Our model solves the task based on each rationale individually and learns to assign high scores to those which solved the task best.
arXiv Detail & Related papers (2020-10-07T12:54:28Z) - Causal Strategic Linear Regression [5.672132510411465]
In many predictive decision-making scenarios, such as credit scoring and academic testing, a decision-maker must construct a model that accounts for agents' propensity to "game" the decision rule.
We join concurrent work in modeling agents' outcomes as a function of their changeable attributes.
We provide efficient algorithms for learning decision rules that optimize three distinct decision-maker objectives.
arXiv Detail & Related papers (2020-02-24T03:57:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.