Criticality and Safety Margins for Reinforcement Learning
- URL: http://arxiv.org/abs/2409.18289v1
- Date: Thu, 26 Sep 2024 21:00:45 GMT
- Title: Criticality and Safety Margins for Reinforcement Learning
- Authors: Alexander Grushin, Walt Woods, Alvaro Velasquez, Simon Khan,
- Abstract summary: We seek to define a criticality framework with both a quantifiable ground truth and a clear significance to users.
We introduce true criticality as the expected drop in reward when an agent deviates from its policy for n consecutive random actions.
We also introduce the concept of proxy criticality, a low-overhead metric that has a statistically monotonic relationship to true criticality.
- Score: 53.10194953873209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State of the art reinforcement learning methods sometimes encounter unsafe situations. Identifying when these situations occur is of interest both for post-hoc analysis and during deployment, where it might be advantageous to call out to a human overseer for help. Efforts to gauge the criticality of different points in time have been developed, but their accuracy is not well established due to a lack of ground truth, and they are not designed to be easily interpretable by end users. Therefore, we seek to define a criticality framework with both a quantifiable ground truth and a clear significance to users. We introduce true criticality as the expected drop in reward when an agent deviates from its policy for n consecutive random actions. We also introduce the concept of proxy criticality, a low-overhead metric that has a statistically monotonic relationship to true criticality. Safety margins make these interpretable, when defined as the number of random actions for which performance loss will not exceed some tolerance with high confidence. We demonstrate this approach in several environment-agent combinations; for an A3C agent in an Atari Beamrider environment, the lowest 5% of safety margins contain 47% of agent losses; i.e., supervising only 5% of decisions could potentially prevent roughly half of an agent's errors. This criticality framework measures the potential impacts of bad decisions, even before those decisions are made, allowing for more effective debugging and oversight of autonomous agents.
Related papers
- On the Robustness of Adversarial Training Against Uncertainty Attacks [9.180552487186485]
In learning problems, the noise inherent to the task at hand hinders the possibility to infer without a certain degree of uncertainty.
In this work, we reveal both empirically and theoretically that defending against adversarial examples, i.e., carefully perturbed samples that cause misclassification, guarantees a more secure, trustworthy uncertainty estimate.
To support our claims, we evaluate multiple adversarial-robust models from the publicly available benchmark RobustBench on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2024-10-29T11:12:44Z) - Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models [79.76293901420146]
Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial.
Our research investigates the fragility of uncertainty estimation and explores potential attacks.
We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output.
arXiv Detail & Related papers (2024-07-15T23:41:11Z) - Malicious Agent Detection for Robust Multi-Agent Collaborative Perception [52.261231738242266]
Multi-agent collaborative (MAC) perception is more vulnerable to adversarial attacks than single-agent perception.
We propose Malicious Agent Detection (MADE), a reactive defense specific to MAC perception.
We conduct comprehensive evaluations on a benchmark 3D dataset V2X-sim and a real-road dataset DAIR-V2X.
arXiv Detail & Related papers (2023-10-18T11:36:42Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - SMARLA: A Safety Monitoring Approach for Deep Reinforcement Learning Agents [7.33319373357049]
This paper introduces SMARLA, a black-box safety monitoring approach specifically designed for Deep Reinforcement Learning (DRL) agents.
SMARLA utilizes machine learning to predict safety violations by observing the agent's behavior during execution.
Empirical results reveal that SMARLA is accurate at predicting safety violations, with a low false positive rate, and can predict violations at an early stage, approximately halfway through the execution of the agent, before violations occur.
arXiv Detail & Related papers (2023-08-03T21:08:51Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
We show how to leverage proxy criticality metrics to generate safety margins.
We evaluate our approach on learned policies from APE-X and A3C within an Atari environment.
arXiv Detail & Related papers (2023-07-25T16:49:54Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Learning to Act Safely with Limited Exposure and Almost Sure Certainty [1.0323063834827415]
This paper aims to put forward the concept that learning to take safe actions in unknown environments, even with probability one guarantees, can be achieved without the need for exploratory trials.
We first focus on the canonical multi-armed bandit problem and seek to study the intrinsic trade-offs of learning safety in the presence of uncertainty.
arXiv Detail & Related papers (2021-05-18T18:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.